AD=A115 028 NAVAL POSTORADUATE SCHOOL MONTEREY
ADAPTATION OF MASNETIC BUBBLE HMV IN A STANDARD N!CIOCWE'-(YC(U)
DEC 81 M $ WICKLIN, J A NEUFELD

UNCLASSIFIED

e iz
el 722
D iz

eo—————

]

———

———

——————
——
.
—
rrr
A

®

==
o]

Il

Bt |

==
o

-*

'

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

NAVAL POSTGRADUATE SCHOOL

[] L]
0 -Monterey, Galifornia
L}
o\
S
)
==
i
<
2
<t
ELECTE]
» JUN2 1982 |
|
o THESIS .
f
3
L\ ADAPTATION OF MAGNETIC BUBBLE MEMORY
; ; IN A STANDARD MICROCOMPUTER ENVIRONMENT
. by
) Michael S. Hicklin
i ; and
:13 Jeffrey A. Neufeld
: , December 1981
| { Thesis Advisor: R. R. Stilwell
8 Approved for public release; distribution unlimited
Ty
= 82 04 01 010
E

SECUMTY CLASMFICATION OF THIS PAGE (When Date Eatered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFONE COMPLETING FORM
T RIPEAY RuLBUR 7. GOVY ACCESHION NG| 3. RECIPICNT S CATALOG NUMBER —
AU [AllZ0d
a. TITLE (and Subtitle) 7 S. TYPE OF REPORT ¢ PERIOO COVERED
Master's Thesis;
Adaptation of Magnetic Bubble Memory in December 1981
a Standard Microcomputer Environment 6. PERFORMING ORG. REPORT NUMBER
‘HFTTRE&» 3. CONTRACT OR GRANT NLwBERTe]

Michael S. Hicklin
Jeffrey A. Neufeld

‘ﬁ——-———-— 0. PROGR AN (L‘ﬂ‘n?r-_f-fl_-—
. PERAFOAMING ORGANIZATION NAME AND ADODARLESS AREA S GORKC Ny UIU.!‘Q.JIISS R [T3

Naval Postgraduate School
Monterey, California 93940

1. CONTROLLING OFFICE NAME ANO ADDRESS 12. REPOANTY DATE
Naval Postgraduate School ‘ December 1981
Monterey, California 93940 3. NUMBER OF PAGES
8
T uowiYSRinG ASENCY NAME & ACORESH(IT diflorant fram Centroliing Office) | ' }i%um?v CLASS. (of thie ripert)
Naval Postgraduate School Unclassified
Monterey, California 93940 ‘WﬂTﬁﬁgfﬁﬁﬁTﬁEVEﬁﬁaﬁEﬁ?‘—
SCHEDULE

Te. OISTRIBUTION srnfinin? (et thie Repert)

Approved for public release; distribution unlimited

DISTRIBUTION STATEMENT (of the abeivast entored I Bleek 30, it ditfecent am Report)

-
~

18. SUPPLEMENTARY NOTES

19. X EY WOROS (Continue an reverse aide If Y and | » oy dlech number)

Magnetic bubble memory, microcomputer operating system,
CP/M~-86, secondary storage media

20. ABSTRACT (Cantinue en reverse side I{ nocoseary and identify by disck mmmber)
™ Magnetic bubble memory is a new digital storage
technology that offers many significant advantages over
currently existing secondary storage media. Bubble
memories, with high densities and relatively fast access
times, are non-volatile semiconductor devices that provide a
high degree of reliability in harsh environments. This
technology has the potential for a vital and unique role in

Somr, 1473 toimiow of 1 wov 6818 cusOLETE
$/N 0102-014 6601

e

AN L R 3,4 s s 4 i D i, A e e

UNCLASSIFIED

R T = . RN
gcu-vv Eh‘ﬂ"“""‘ @F YWt P aQ8rThen Nete Bntanmg.

(cantinuation of absgtract)

“both the civilian and military computing environments due to
. the combination of characteristics exhibited by magnetic
domain devices.

This thesis presents an implementation of a magnetic
bubble device utilizing a conventional operating system,
Digital Research's CP/M-86, and a standard commercial 16-bit
microcomputer, the Intel iSBC 86/]2A. A fully operational
system capable of testing, evaluating and utilizing a
magnetic bubble device in a standard user environment is
presented.

.
e i e 1 200

o ik g i U v
L

Ay

Accession For
NTIS CRARI v

DTIC T8 O
Unenn:unced O
Justificalion

e i b

By -
D};trihuticn/ .
Availablliivy Code§
T Avatl and/or
Dist = Speclal

’1 |
l |
” -

oTIO

corY
INSPECTED
2

-

DD Egrm. 1473 UNCLASSTFIZD
S/.‘} 01'52‘3014-6601 2 SESUMTY ZLABMICATION 2P M8 P4ALThen Dere Enierea)

S PRV RS

Approved for public release; distribution unliasited.

) Adagtatioa cf Magnetic Bubbiéiuelory
in a Standard Microcomputer Environament

by

. Michael S. Hicklin
Captain, United $States Marine Corps
B.S.M4.E., University of Utah

Jeffrey A. Neufeld
Captain, United States Marine Corps
B.S.S.E., United States Naval Acadeay

Submitted in partial fulfillaent of the
requirements for the degree of

MASTER OPF SCIENCE IN COMPUTER SCIENCE
from the
NAVAL POSTGRADUATE SCHOOL
December 1981

Authors:

?/,//w . 7[(, (44@/ |
T

ApEroved by: M

Thesis Advisor

leee. K. /C\mcw,

Second Reader

at of Computer Scisnces
LS AT ek e

Dean cf Information and Policy Scieaces

ABSTRACT

dagnetic bubble memory is a new digital storage
technology that offers mary significant advantages over
currently existing secondary storage nmedia. Bubble
mcsories, with high densities and relatively fast access
times, are non-volatile semiconductor devices that provide a
high degree of <reliability in harsh ervironments. This
technology has the potential for a vital and unique role in
both the civilian and military computing enviroaments due to
the combination of characteristics exhibited by magnetic
dcnain devices.

This thesis presents an implementation of a aagnetic
buktle device utilizing a ccnventicnal operating systen,
Digital Research's CP/M-86, and a standard commercial 16-bit
micreccomputer, the Intel iSBC 86/12A. A fully cperational
system capable of testing, evaluating and wutilizing a
magnetic bubble device in a standard user envircnaent is

presented.

1.
II.
3 II.
.
!
E | Iv.
|
P~
]
3 |
o : v]
-
.
t
2
e
o

TABLE CF CONTENTIS

INTRODUCTION ==reccmccacccncoccacwcccca= -
BACKGROUND OF EUBBLE MEMOFIES - - -
A. MAGNETIC BUBBLE COMAINS --=-w=-~e-ccc=c—-- ————-

B. DBUBBLE DOMAIN DEVICES -~-- - -- - -

C. HISTORY AND DEVELCPMENT

D. CURRENT TECHNOLOGY AND ARCHITECTURE

APPLICABILITY OF MAGNETIC BUBBLE MEMORIES -====----
A. CONPARISON CP MASS STORAGE TECHNOLOGIES -=w-=--

B. APPLICATIONS OF MAGNETIC BUBBLE MEMORY
DESCRIPTION OF THE DEVELOFMENTAL SYSTEM -~~—w-eace-
A. TIB0203 MAGNETIC EUBBLE MEMORY ==~=-c-cceccccac--
B. PC/M MBB-80 BUBBLE MEMORY SYSTEN ----ccecccecna--

C. DEVELOPMENTAL SYSTEM ~==m-memmecemcemccccccona——-

D. IMPLEMENTATION HOST SISTEM -—====--

LOW~-LEVEL BUBBLE PEVICE INTERFACE -=--- - -

A. INTEL 8080 IMPLEMENTATION - - --
B. USE OF THE CP/M¥-80 MBE-80 DIAGNOSTIC 2ROGRAYN --

C. INTEL 8086 INTERFACE CONSIDERATIONS ===~===ewe=-

D. INTEL 8086 IMPLEMENTATION - - -

E. USE OF THE CP/M-€6 MBB-80 DIAGNOSTIC PRCGRANMS ~

doih

12

12

17

25

27

36

36

42

46

46

48

50

52

56

56

60

62

65

r ORI Y o A AAS st A SRS . i b e

LLACEN

T

vI.

VIiI.

CP/M-86 INTERPACE IMPLEMENTATION ~===-- -

A.

BUBBLE DEVICE STORAGE ORGANIZATION

CP/H-86 BIOS CONSIDERATIONS =e=eew- - -
1. Structured Standards for the BIQOS ===e—ee=-

2. Sctructured Aprroach to the BIOS =~==-====c--

3. Jump Vector Interfaces - c—————

USE OF THE CP/M~86 MEB-80 FORMAT PROGRAN ------
CP/¥-86 BIOS IMPLEMENTATION =~vewweccceccancone--
1. Modification of the Bxisting BIOS ===v=====

2. Disk Parameter Table =~ewecececceccccncrncax

3. Disk Configuration Tables - - -

4, BIOS Generaticn Procedure =----- - -

5. Reconfigquring the BIQS ——~c-ccccccccacccc=
EVALUATION OF THE INPLENENTATION w~~=-=—ceca==w
1. Perfornance =-—==e=ececccecccca==-= - -

2. Limitations «=-eecoree- - - -

3. Applications =-==-- B e

BOOTLOADING CP/N-86 FROM THE MEB~8Q0 ==~ -

a.

B.

C.

BOOT ROM AND LOADER CONSIDERATIONS <-=w—===—=--

BOOT ROM AND LOALCER IMPLEMENTATION ~==~-v-cc=--

EPRCM GENERATION ~=====c=—- -

75

75

79

79

81

B4

88

90

90

92

95

99

101

102

102

105

107

109

109

112

115

RNy

VIIXI. CONCLUSIONS -

A.

C.

APEENDIX

APFENDIX

APEENDIX

APPENDIX

APEENDIX

APEENDIX

F

IMPLEMENTATION SYNOPSIS ~-

RECOMMENDATIONS FOR FUTURE WORK —=--

POTENTIAL

PROGRAM

PROGRAY

PROGRAN

PROGRAN

PROGRAN

PROGRAN

APPLICATIONS

LISTING OPF

LISTING OF

LISTING OPF

LISTING OF

LISTING OF

LISTING OF

DIAG80.ASH
DIAGB86S.A86 ~-
DIAG86M.A86 --
MBBOPNT.A86 ~-
ABBIOS.ABG -

MBBORON.A86 -~

LIST OF REPERENCES ===-===ce-ccccc-a -

INITIAL DISTRIBUTION LIST -

118

120
122
126
135
146
159
166
187
196

198

anddiag

DISCLAINER
Many terms used in this thesis are registered trademarks
cf ccamercial products. Rather than attempt to cite each
irdividual occurrence of a trademark, all registered
trademarks appearing in this ¢thesis will be 1listed belovw,

fcllowing the firm holding the trademark.

%

%‘4

Intel Corporation, Santa Clara, California:

Intel HOLTIBUS INTELLEC MDS
Intel 8080 Intel 8086 isSBC 86/12A
isBC 202 18259

Pacific Cyber/Metrixs Incorporated, Dublin, California:
Bubbl-Tec Bubkl-Machine MBB-80 Bukbl-Board

Digital Research, Pacific Grove, California:
cp/N-80 Cce/18-86 CP/M

s et Ko i

e
R

D L

L s R
ek ot ikl o arien . m LU

- ——

I. INIRODUCTION

Magnetic bubble memory is &a new digital storage
technology that offers many significant advantages over
currently existing seccndary storage amediuams. Bubble
mepcries, with high densities and relatively £fast access

imes, are non-volatile semiconductor devices that provide a
high degree of reliability in harsh environments. This
technology has the potential for a vital and unique role in
both the civilian and military computing environments due to
the combination of characteristics exhibited by magnetic
dcmain devices.

This +hesis presents an isplementation of a magnetic
butble device (MBB-80) utilizing a conventional operating
system (CP/M-86) and a ccommercial 16-bit aicroprocessor
(Intel 8086). A fully operatioral system capable of
testing, evaluating, and utilizing a magnetic bukkle device
in a standard user environszent is presented.

There are four major phases into which this thesis is
organized. The first phase will preseant an overview of
bukble domain devices t¢ prcvide ar understanding and
evaluation of ¢their potential applications as amass storage

mediums. Chapter II will describe the theory of aagnetic

butble devices and the currert state of magnetic dosain

technology. Chapter IITI will present ap evaluaticn of
bukkle memory <¢technolecgy and wutilization along with a
justification for *the agpplicability of wmagnetic bubble
dzevices.

The second phase will address the 1low-level interface
Tequirements for <the M¥BB-80 Bubbl-Bcard (prcduced by PC/H4
Inc.) when interfacing with either the Intel 8080 or Intel
8086 microprocessor. The purpose of this phase w#ill be to:
(1) verify the operaticmal characteristics ¢f the MBB-80;
and, (2) design and implement the lcw-level systeas software
necessary to interface the operating system's I/0 structure
with the magnetic bubble memory ccntrcller.

The third phase will address the issues necessary to
isplement the interface of the bubble memory systeém with the
operating system's primitive secondary storage access
rtcutines. The tasks necessary in this phase are to: (1)
design a memory organizaticn and management scheme for the
magnetic bubble memory; and, (2) design the interface such
that the magnetic butble memory agpeags as a "standard" mass
stcrage device (disk) to the host operating systen.

The four«h rhase is the actual interface of the MBB-80

Bubbl-Boards into the CE/M-86 operating systea. The

10

RSV

bamdache i b o o

= g

interfaces and designs developed in the second and ¢hird

phases are applied in this phase. A generalized,
takle-driven, "hasic input/output systea" (BIOS) is
developed which will allow the wutilization of MBB-80
Buktl-Boards (as "disks®™) by the CE/M-86 operating systea

alcng with conventional flcppy and hard disks.

11

II. KGROU 0 (]

A. HSAGNETIC BUBBLE DOMAINS

The entity known as the "wmagnetic bubble™ has been auch
talked about in the context of solid state ameamory
tachnclogies. This section will present a description of {
what a magnetic bubble dcmairn is and will descrite scme of
its properties. No attempt will be @made to present a
cogprehensive explanation of magnetic substances or
magnetism, but rather the tasic theories of magnetic domains l
will be put forth.

! Certain elements and their alloys {(Fe, Co, Ni, G4 and

Dy) along with other substances exhibit the well-known
prcperty of wmagnetism or, more properly, ferromagnetisa
[Ref. 1: p. 619)]. This prcperty pernits a material's atonms
20 achieve a high degree of alignment despite the atoas’
tendency towards randomization due to thermal motionms.
Adjacent atoms in“eract and ccuple into rigid semi-parallel
:ﬂi patterns. These patterns are known as ferromagnetic domain

! structures and are lccalized within a specimen. Materials
. : can be cut such that their directicn of w®magnetization is
E alcng a single axis (viz., alcng one particular direction)
3

j and are known as uniaxial ferrcmagnets.

12

NG kAN 57 % <4y £ i b R e et

Several important F[prcperties ¢f ferrcmagnetisa are
2xhibited when a magnetic sukstance is subjected tc an
applied (external) field., Pirst, a rglative increase in the
external fizld of O to 0.01 will cause a gelative increase
in the substance’s magnetic field of 0 to 1000 (Ref. 2: p.
2. This factor of 100,000 cccurs primarily in a long, thin
sarple or in a closed ring of some form. Secopdly, 1if a
sincle, <=hin, crystal sheet (£film) of certain uniaxial
ferromagnetic materials is cut perpendicular to the axis of
natural magnetization (see Pigure 2.1(a)), the doamain
structure is found tc be one of wavy, or serpentine, strips
having al*ternating directions of wmagnetization which are
perpendicular to the surface ¢f the sheet [Ref. 3: p. 66].

I+ is *he combination of these <tvwo properties which
surrlies an environment for a wmagnetic bubble domain. A
thin crystal £film as descriked above, in the absence of an
external fielgd, vill have a volume of serpentine strips
magne+ized in one directicn which equals the volume of
‘strips magnetizad in the other direction, =resulticg in zerc
nat magnetization. Upcn the application c¢f an external
magnetic fi2ld perpendicular to the fila, the strip domains
magnetized in +th2 directicn ¢f the field will increase in

volume as “he opposi<«ely magnetized dcmains shrink in volune

13

Bubble supporting film

o /
- !ﬂ“' (a)
|
i
s J. L) ‘
Small applied field " A {b)
ﬂ
A Larger applied field j
‘:_,7 /(;

Figure 2.1 (a) Serpentine Strips, (b) Magnetized Strips,
(c) Cylinders

O S U SR KA 2o S5 ke B 8 aa o.L

[Ref. 3: p. 86]. This phenomenon is the <result of the
prccess of energy wminimizaticn and is shcwa in Figure
2.1(b). As the external field ircreases in strength, a
field value will be reached at which the shrinking domains
contract inte circular cylinders; it is these «cylinders
vhich are known as "magnetic bubkles." These cylinders are
shcwn in Pigure 2.1(c). 4 further increase in the field
will wultimately result ir the tctal collapse of the
shrinking dowmains, leaving the fila saturated (viz.,
magnetized in one direction only) [Ref. 4: pp. 3-4].

The applied field, known as the bjas field, is essential
for the stability of the bubbles within a substance. The
bias is typically c¢n the crder of 100-200 Oersteds (a unit
used to measure magnetic strerngth), which can ke easily j
prcvided by small, permanent wsagnets. This allows stable
buktle existence independent of any power source, which is
the foundation for non-vclatile stcrage media. The bubble
i*self is maintained by a coabination of three forces. The
stable equilbrium c¢f the domain is preserved by the
magnetization o¢f the Dbukkle itself producing internal
magnetic pressure which opposes the squeezing force of the
applied field. The bubble domain maintains its circularx
shape because of the force of the wmagnetic surface temsion

of the wall which surrounds the dcmain. [Ref. 2: p. 10]
15

T A R e T Y

Clearly, the absence c¢r presence of a asagnetic bubble

dcsain can be used tc represent a zero (0) or a onme (1) for
data storage. Hovever, there are several additional
requirements which must ke pet Lefore this technolecgy can be
considered for use as a data agedium. One of <these
prcperties is the mobility of magnetic domains. A bubblae
vill mcve towvwards any position which msinimizes energy. Such
lccations can be defined and created by having small,
reduced fields of external bias. Unbalanced forces acting
on the wall of <¢the bubble will cause the bubkle to move in
+the direction of +the reduced Lcias field. By 1laying out a
nerack"® of permallcy (nickel-iron alloy) on the magnetic
£ilm and selectively altering the local bias on the track,
it is possible to move bubtles along a prescribed path. It
is ipportant to note that, although this is siamilar to bits
on a magnetic tape, there are n¢c mechanical, acving parts
invclved as the bubbles move along this closed track. The
fact that the bubble 3domains are only a few smicrons in
diameter and may move at velocities in excess of several
meters per second can provide data <rates in excess of
several megabits per second [Ref. 2; B« 10]. The remaining
requiraments of a storage medium will be presented in the
next section. I+ will be seen that magnetic bubkle domains

can mneet <hase requicements as vell.
16

B. BUBBLE DOBAIN DEVICES

This section will discuss the basic operations necessary
+c support bubble domain devices. These operations include
butble propagation, bubble domain generation and bubble
domain detection. Some Dbasic bubble nmemory device
orqanizations will be presented along with the <theory and
prcblems sssociated with these organizatioms.

The effect of a bias field on predefined tracks vas
extlained as the basis for bubble domain propagation. These
tracks are ip fact analogous <to conventional electrical
transaission lines in that the <track carries a signal
(bubble) to various parts of the systea. To meet the needs
of data storage it is necessary tc be able to "field access"
the propagation +rack (viz., access a specific location).
This implies multiple tracks (for more than one Lit) on a
butkle domain Adevice that are all ccntrolled and
syrchronized by one external magnetic field applied <o the
entire device. By rotating this field, known as the drive
field, a magnetic wave can be caused to travel through the
device. The bubble domains "ride" this magnetic wave and,
thus, propagation takes place [Ref. 2: pp. 16-17]. of
course, i+ is necessary to be aktle to nake the bubble

domains change <their directicn cf aovement, Special

17

2

GE ST T oy

perralloy circuits have he;n designed to provide ¢this
furction. ¢raiqht tracks in the form of "T-bar” circuits,
conbined with special 90 degree and 180 degree cormers, fors
a tasic storage array [Ref. 3: ¢p. 87]. The "T" shape is
used because of the magnetic field effects found around the
lcng stem of <the "TW, Bubbles that move up <this stem are
trapped under the crossbar. As the drive field rctates, the
buttle follows around the tcp c¢f the "T", =2ventually moving
perpendicular to its original directicn (sse Figure 2.2).
The operation of bubble domain generation involves tha
creation of bubbles (writing 1 bits) within the Jdevice.
Mcst generation is done by a process called nucleation. A
current of a €ovw hundred ailliaaps, maintained for
aperoximataly 100 nanoseconds, is used to create a localized
fiell in opposition %o the bias field. This reverses the
magnetization on the fila, which causes the creation of a
new bubble -- its size and fpositicn being finally stabilized
by the bias field [Ref. 4: pp. 3-7]. It is noted that the
prccess of nucleation is temperature sensitive and an
imglemented system aust provide a @means of varying the
gereration current to meet large taeaperature changes (failed

nucleation or mul¢iple nucleations can occur) .

18

e e B R R

3
-
2
2 341
4
Rotating T
field A bubble
Figure

2,2 "T" Bar Movement

19

¥
ez

!

Permalloy
pattern

mnwe vy

AN
AT

T T R T P T e e

There are several agprcaches to the problea of bubble
dosain detection, or reading bits. One technique is a
non-destructive readout scheae. A nmagnetic dcmain has
asscciated vith it a small magnetic field. As the bubble
passes a suitable sense agplifier detector «circuit, <there
will te a small change in the resistance of the circuit due
<o the magnetic field of the bukble. This detectcr is known
as a magneto-resistive senscr and has the advantage of being
a passive (no overhexd) detection scheae. Unfcrtunately,
+he "signal"™ that is measured, or read, is but a fraction of
the total power of the bubktle doamain. The second approach
is one of a destructive readout. The bubble domain is
side-tracked onto a special detection/generation track.
Here the full power of the domain is sensed (causing the
destruction of the bubble if one is present) for a stronger
readout signal. The bubble (if present before teadout) must
now be re-generated and returned to the storage track [Ref,
S: p. #1]. This re-nucleation cbviocusly reguires mcre power
and wmore supporting devices than +he passive readout
schenes.

The operations possiblée with magnetic bubble dcmains can
rasult in a wide variaeaty of architectures fc¢r bubble

devices. Some of the more scphisticated designs will be

20

oS e

presented in Section D cf this chapter. An explanation of
the €first, and simplest, bubble domain device will be
discussed here.

Ap analysis of the magnetic device from a top-level view
reveals a basic structure as seen in Pigure 2.3. All
devices will correspond to this structure and, by soae
m=2ans, isplement the functicpal blocks as seen in this
fiqure. Only the functicn of redundancy management was not
discussed in the above sectioms. This is basically the
igsuye of how manufacturing techniques result in a certain
chip yield (viz., the yseakle rcrticmns of each bukktle chip).
It is sufficient to say that various sechanisas are
available <o provide redundant storage capability in a
device and to keep a map <¢f this redundancy. One method
will be discussed in Chapter IV, Section A.

Magnetic bubble devices are serial storage devices wvwith
blcck access capabilities. They are similar to zccrventional
electroaecnanical media, but with several major differences.
Butkles can Le stopred and started at the bit level while
most devices are blcck-oriented at a larger data volume.
Butbles do not have mechanical addressing aids 1like
star+-of-tape, disk tracks and sectcrs or optically-sensed

index markers. Some other means of identifying and locating

21

A S $ 2 0 i iR ienlih e
M B
D wih anmadina .

Host Data
B .
‘—1

interface

Coil drive

Write

A 4
System
Redundancy
conFrQl and management
timing

T

-

A A

Sense

Bubble
devices

Transfer
replicate

Figure 2.3 Basic Magnetic Device Functions

22

T T g

data is necessary. It is the chosen means of addressing

that influences..the device design of tubble storage.
The simplest magnetic bubble domain device uses the
shift register organizaticn. This is depicted in Figure
2.4 (). Bubble domains rotate around a fixed, <closed loop
with a simple generator and detector circuit. Average
g access times require propagaticn of a bubble through half
the register. Transfer rates are dependent c¢n serial
bit~-by-bit <+<ransfer <through the detector. This siaple
device points out *he three operational characteristics
(which the shift register does not address efficiently) that

influence the design c¢f bukkle devices: (1) need for high

data density; (2) fast access time; and, (3) fast traasfer
rates.
The wmajor/minor 1loop chifp orgacnization depicted in

Pigure 2.4(b) was the first attempt to address the need for

improvement in these <characteristics. This scheame is
basically one of block transfer between the aincr gtoraqge
lcces and the =2ajer operatiopal 1loop. Bi~directional

transfer gates allow a block of data equai (in bits) ¢to the

R T Y L o v
H .':“J LS EE v ; 4
..a..-..-&.-.‘-_ — e e S S,

i nusber of aminor loops ¢to be transferred to/from the aajor
lecg in a single operaticn. Transfer of all bits in

parallel is achieved by a pulse to the coamcn transfer bar

23

* w0

(a)

Generate
v) Detector
o —l - Replicate/transfer
-
g - D)
_ -
- D,
C ey
Y -)
- -
- D,
- -
\ -)
Generate (b)

Detector

R Replicate/transfer

Major 1locop
(o - ' T o o)
— —
d H H i Transfer
‘ - in/out

Minor loops

- - — ame = e e oy S o

Figure 2.4 (a) Shift Register Architecture,
(b) Major/Minor Loop Architecture

[)
&

e A G B Brnen | A < © L RERS S m—————

Y T T PP

-

between the majcr loop and the minor loops. The minor loops
rotate in synchronization with the majcr loog. The major
locp makes one revoluticn t¢ perform its operation, then the
data on the major loop is read kack to, or writtem into, the
mincr loops. This clearly has the advantage of being a
siefle, =2asy-to-build device that provides some degree of
increased data storage and access times. However, this
device, implemented as a single entity, still suffers froa
serial readout a.l slow external transfer rates.

The next section will digress to discuss the history and
development of bubble dowmain device technology. It is
presented merely as a histcrical perspective to provide the
context for the discussion ¢f architecture and technology in
Secticn D of this chapter. !
C. HBISTORY AND DEVELOPMENT

Bubble domain devices are a relatively new technology.

The discovery of garnets, a glasslike substance, in 1956,
allcwed the <fabricaticna <cf an environment condusive to

magnetic domains. In 1959, the first bubble and serpentine

dcmains where observed in certain ferromaghetic substances.
A. H. Bobeck, of Bell Telephone Labcratories, presented the
first description of tubble devices at the 1967 ;
International Magnetics conference. Bubble domains were

ignored at that tize. [Ref. 6: . 3]
25

e R

The debut of the bubble dcmain cccured in 1969, when
Boteck, at the INTERMAG conferernce, updated his 1967
presentation. Be clearly showed the feasitility of
ccntrolled bubble propagation in a shift-register device,
alcng with bubble generatiocm, replication and detection.
For the first time, bubble dcmains were seen in the ccntext
of mass aemory emedia. The technical interest generated at
that conference scon had an effect on the business
community.

Bell Systens, vhere the first bubble devices were
designed, utilized +this technclogy for repertory dialers,
voice message recording and fixed-head-file rerlacement.
Hitachi was the first coapany to anncunce a magnetic bubble
memcry product (0ct 1975) which was ar 18-chip, 32K byte
unit intended for office machines. Hewlett-Fackard quickly
fcllowed with applications in desktop calculateus.

Texas Instruments intreduced the first general purpose
bukble device in 1977. This is a 92K bit mescry module
which they wutilized in ¢their portable terminals. I+ is
interes+iag *o note that at this time several cf the largest
segiconductor memory manufacturers (Intel, Signetics,
Rockwell International and National Semiconductor) entered

«he arena of tubble devices.

26

The early 1980%cs have brcught the advent <c¢f 1M bDyte
bukttle davices with <transfer rates in excess of 800
Ktits/sec. A Jdetailed arnalysis and compariscn of the
different memory technolcgies and applications will be
presented in Chapter III. The historical developnment of
bukttle memory d2vices can be referenced to the basic
characteristics and operations presented ir this chapter.
The driving inpetus has been cn prcviding denser packaging
(mcre bits), faster access times and higher transfer rates.
A1l c¢f <+hese factors have been necessarily constrained in
the context of marketability and manufacturing costs. These
considerations have produced many newcoaers into the field
alcng with revolutionary designs and archkitectures fcr
magnetic bubble devicas. Bowever, the develcpment of a new
tichnclogy +hat must simuliuneously compete with established
technologies (semiccnductcr, disk) has rproven to be a
liriting factor in <he advancement of m@magnetic bubble

devices (TI and National withdrew from the market in 1981

h

cr reasons cf profitability).
D. CORRENT TECHNOLOGY AND ARCHITECTURE

The at“empt <o imprcve the performance characteristics
of bubble domain devices has proceeded along three distince

paths. First, has been the iaprcvement of the componen<ts

g
{
1

making up the bubble device itself (viz., sense amplifiers,
garnet substrates, e+*c.). Secopndly, there has been much
effcrt directed at €finding an optimal architecture for the
basic major/minor locp organizaticn. Finally, the extensive
use of support circuitry and sobhisticated controllers is
presenting a more simplified logjcal view (as seen
externally) of magnetic bukble devices.

The design of physical compcnents for the bubkle devices
is inherently coupled to the issues of magnetisnm, field
electronics and garnet manufacture. An extensive discussion
of these topics, hcwever, is not within the sccpe of this
+thesis. Therefore, only wmenticn cf the areas <¢f vork in
current research will be made here. The coil drivers, as
origirally described, rproduced a sine wave which propagated
butktle domains <+thrcughcut the devica. These sine vaves,
vhich start and stop precisely, are difficult to iamplement
at a low cost and have, therefcre, been replaced ty devices
+«hat generate <riangular ¢or trapezoidal wave forms [Ref. 5:
P. 417. Bubble detectior, vhether destructive or
non-destructive, has nacn-trivial current regquirements for
the seanse amplifiers. A reduction in the nuamaker of and
power requirements for current sources is a primary goal of

detection circuit design. Finally, the issue of high bit

28

bl aaio)

density per unit cost, as in all memory devices, is being
addressed by new garnet substrates. The work in this area
has the goal of reducing the size of the bubble dcmains and
putting as many tracks as pessible c¢n a chip while avoiding
inter-bubble interference [Ref. 7: Pe 63]). Current
technology is suppor+ing 1 Mbit devices with areas of less
than cne square centimeter and with a bubble domain diameter
of tvwe (2) amicronms.

The first bubble domain device architecture, the shift
register, suffered from twc main inadequacies: (1) a single
defect in the shift register chain resulted in a bad chip;
and, (2) data just entered had to be cycled through %he
entire shift register <chain tc be read, resulting in slow
data access. The major/minor lcop design addressed these
prctleams. Data is generated in a majer loop, circulated,
read and rotated back to te restcred in the original minor
locp rpositions. Shorter «cycle times are achieved if this
need to restore data is removed. This idea was incorporated
into <+he "block replicate" architecture, This is a
multilcop arrangemant where the mincr loops comzmunicate with
a read track via replicate/transfer gates, allowing reading
without disturbing <the mincr locp data (see Fiqure 2.5).

Erasure is accomplished ©Ly activating <«ramnsfer without

29

[
'
!

kod Loae g

i el aet S o 1Al e
c - R

Detector

Read track)

- - - > -
E\ Ew Replicate/ AN A E\

transfer
Y ~ — Minox loges _ _ _

T;:nsfer / qy :u FV F FV

- :

r Write track
—-: Generate Annihilate

Figure 2.5 Block/Replicate Architecture

30

i B 0 e A e ALY s - 7 vinn Shd

\ P B)
e o cadd .

e —

Teplicate. A separate write track allows block data to be
writ<en to the minor locps via transfer-only gates. The
idea behind the replicatestransfer gate is <that a bubble
domain 1is replicated (by splitting or nucleating a new
butble) and then transferred to the read track for
prccessing by +the detector. The conventional major/minor
lccp design did this one tit at a time on the @ajor loop
whereas the block/rerlicate desiqgn reglicates, in parallel,
all the mincr loop bits in a block.

The physical makeup of bubble domains and their
resul+ing interacticns requires that minor loops have bubble
doxains two (2) bits apart (viz., an empty position between
every positicen vhere there coyld Dbe a domain) .
Consequently, a majcr lcor or read/write «racks cculd only
generate on every cther cycle, that is, they would cycle
once uselessly while the minor 1loops cycled to bhypass the
empty positions on the wmajor locp. Data <c¢can be read on
every c¢ycle by splitting +he data storage intc odd bizs
{lcops) and even bits (loops) ([Ref. 3: p. 95]. This
architecture is depicted in Pigure 2.6. To perform a write
opezation, the entire blcck is generated in Ecth write
tracks. The odd and even generate tracks are aligned

sipultaneously with the «@sincr lcops arnd the write takes

31

aiianin.

AIN3d3IFYd21y UaAxg/ppo d31edyiday/yooryg 9z 2an8yy4

3jexauan IL ;

C ﬂ._ m_
AWIIIQW 23 [TYTUUY AWIIIIIQW s3eTTIYTUUY
- J - J
Tl 0 (2 J Y (N (B Ut AeIsuern AN AR AN -
(s1Tq uaas) (s1tq ppo)
~door TouTi oot xoutH ™ Ay
I33suexy
/®3eo11day W\ \ W \W VW \W \
- H—H—H : H - H—H—H

-

1030923 9q

place. To perforam a read operation, the replicated gates
are activated on the odd and even stcrage loops. The *wo
tracks are one bit apart so that the odd and even tracks are
interlaced as they go to the detector, providing a read on
every bit position.

All the multiloop architectures use redundancy to solve
the problem of defects in chip sanufacturing. Extra storage
cagpacity is provided on the chip by having more ainor loops
+han are actually required to meet the device nmemory
capacity. Bad 1loops, normally discoversd in factory
testing, are located and put 1into some form of a amap.
Defective loop addresses are usually stored in a PROM within
the rtubble ccntroller cr in some ¢f the redundant 1loops
themselves. [Ref. 3: p. 87)]

To become an econcmically practical and versatile
" device, it is essential that bubble ameaories fresent a
furctionally simple and 1logjcal view to potential users.
Much effort has been put forth in the area cf support
circuitry which handles <the 1low-1level functions involved
with the management of bubble devices. The biggest addition
to the support circuitry has keen in the area of bubble
mescry controllers, These ccntrollers (which are usually

40-pin HMOS devices) provide bus interface, generate all

33

s it b

M R L LA A
.

system tiaing and contrel, maintain menmory address
infcrmation and process the user's external software
requests and coammands to the bubble devices [Ref. 8: p. 57].
The conceptual purpose of the controller is to make the
magnetic bubble aemory lock like a peripheral tc¢ <the host
cosputer. The sense amplifiers used for detection have been
inccrporated to include multi-channel capabilities (viz., to
handle parallel readouts frca mcre than one device to allow
high data transfer rates). This results in a logical memory
orzganization which can span ¥n® devices, where #n* is the
nusber of bits in the host systea's word size or data bus
size. Da“a protection and save-circuitry have been provided
to prevent bubble ccontamirpaticn in the event of a power
lcss, which can lead <to a situatioa where loops are not
rotated back to their starting point. This is necessary for
correct addressing. The contrecller, utiliziag a bad-loop
mag, also automatically substitutes redundant locops for bad
lccps on a chip.

The current architecture and technology of bubble domain
devices are influenced by the need to coampete with existing
seccndary memory devices, Consequently, such effort is
being put into both the physical manufacturing of the bubble

devices as well as into the logical architecture and user

34

(U

interface. I+ 1is clear that any architécture sust allow
magnetic bubble memories tc be easily interfaced to existing
cCoTputar systeas.

The next chapter will grovide an analysis and comparison
of magnetic bubble devices to current meaory technologies,
with particular emphasis on the specific strengths and
weaknesses of magnetic devices. Aprlications fcr magnetic

devices will also be discussed in depth.

e

Bt o o

AaiabiOed

R Al nn - €k \atholmind- T ARG oo AW s o,

Cosauda Man ot

III. ARPLICABILITY OF HAGWETIC DUBDLE HEMOBIES

A. COCHMPABRISON OF MASS STOBRAGE TECHNOLOGIZES

Magnetic bubble memories should not be considered to be
in direct coapetition with éxisting, well-established foras
of ncn-volatile storage. Rather, butble memories should be
viewed as a secondary storage technology which can £ill the
well known capacity/cost and performance/cost gaps in
conventional memory hierarchies.

In Pigqure 3.1 are plctted the areas inhabitable by a
vide range of memory technologies. As can be seen in Figure
3.1, there is a large gap Letween core technology and
fixed-head disk *echnology. At present, attempts to f£ill
this gap are being made by electron-beam accessed memories
(EEAM), charge-coupled devices (CCD) ard aagnetic bubble
memcries (MBM). Although EBAM probably bhas the 1lowest
pctential ccst per bit ¢cf <the three technolcgies, it
raquires fragile vacuum components which severeiy 1liait
aprlications.

CCD technology has not sufficiently surpassed dynaamic
RAM technology to become preferable from either an econosmic
or a performance standpoint. Currently, CCD meacry access

tizes (apeproximately 100 micrcseconds) are much slower than

36

)
i

sayiroede)y pue sawmy]l ss920y A3ofouysag Kioway 1-¢ »anfyy

SpPuOD3S uY BWI] SSIDDY

NOA 1 NlOA V|OA OIOH wloﬂ
T T Lo T T 0Tt
1eyodig
ot
sow t
21bo M
sajjassey SOSTIP mmmoﬂ& A moa

37

~ | ot

sabptiize))

S3Tq uy &3Toedes KAzowsw T[v3l0g

| mo.n
adey, sa1qqnq
o133ubey Wvaa
o1
AHW aH4a 4 T
H

4 WHR

01

MO TS unITpay iseyg 1

P, Cee PYETCN

thcse of semiconductor ©FAM (70-2000 nanoseconds). An
additional disadvantage of CCD nmemory is its susceptibili<y
*o alphaparticle radiaticn. As is the <case with RAM
techneclogy, as memory densities have increased, the
cagpacitance needed *o store the charge for each bit has
decreased, making i+t more prcbable that an alphaparticle
s*tike will cause a sof+t error. (Ref. 9]

Magnetic buktble memories, cn the other hand, have the
advantages of non-volatility, higher density and lower cost
p2r bit over CCD and RAM technologies;ﬂm;nd the advantage cf
solid-state technolecgy over EBAN. Bvaluaticn of the
performance of magnetic butble memories 1is usually
accomplished utilizing the same parameters as those used for
evaluation of floppy disk devices. Valid compariscns can be
made Dbetwa2en the performances of the twc technologies
because of their common roles as secondary storage
technclogies.

Magnetic Dbubble acmcries are organized as shift
reqgisters for block access, with +the natural kLlock size,
referred “0 as a page, being equal to the numbeér of minor
loces. Access to 1ata is accomplished by shiftirng bubbles
in the mincr loops and transferring the apprcpriate page *+o

+he major locp. The data is then ~read or wricten by

38

o s e ——— e+
e e e aren e kr——

shifting bubbles around the aajor lcop. This organization

allcws for the compu*ation ¢f both a seek time and an access
time <to parallel disk performance ameasures of the saae
nases.

The seek time of disk systems is normally taken to mean
the time it takes tc mcve the read,/write head to the track ;
ccntaining the desired data. This is analogous tc rotating
the minor 1loops in a magnetic bubble device to fplace the
dcsired page on the major loop. Seek time for a bubble
meegcry device is, +herefcre, dependent on the number of
shifts required in the mincr lcops and the shift rate of the
dzvice. Current bubble memory architectures contain from 64

tc 4096 pages in the wmincr 1loops and have a relatively

ccamcn shif+ rate of 100 KHz [Ref. 10: p. 29]. Taking

wcrst case to be a ccmplete rotation of the minor loop at 10
nicroseconds rper shift results in worst case seek times of
6.4 - 41.0 milliseconds. Assuming half of these values to
be an average yi=lds average seek times of 3.2 - 20.5
milliseconds.

Ccmbining +his seek +time with <he time regquired <o
rotate to the firs* bi¢ of data in the read or write track
yields the data accsss time fcr a magneti bubble device,

By assuming an average major loop size of 144 tits (the

~actual major loop size of the TIB0203 92K bit device) and
aprlying the shift rate of 100 KHz, a worst case read/vrite
dalay time of 1.44 milliseccnds is ottained. Coatining this
delay with the previously ccamputed seek time results in
average access times of 3.92 - 21.72 milliseconds for
magnetic bubble devices, which is cornsiderakly faster than
the average access times of 115 - 500 amilliseconds for
flcppy disk devices. [Ref. 11: p. 1]

The data transfer rate for a magnetic bubble memory is
determined by the number of bits per rage, the shift rate of

the device and the number of cycles required to transfer the

page of data out <¢f or inoto the device. Basic transfer
rates are 40 -~ 100 Kkits/second for individual magnetic
buktle device organizations. These rates may Le greatly
improved by operating magnetic bubble devices in parallel
(ncre than one device at a time). Bubbl-Tec's HDC,/HDB-11
system, for example, utilizes four 1M bit bubble devices in
parallel <o at%ain a peak transfer rate of approximately 800
Kbits/second [Rsaf. 10: p. 29]. Such uses of paralleal
isplementaticns allow magretic bubtble systems ¢c achieve

+ransfer rates 4in excess <¢f those cf floppy disk devices

(125 - 500 Kbits/seccnd).

40

. . e
) o P s St i

The solid-state nature of aagnetic bubble devices is a
great contributing factor to their reliability. Since there
are nc moving parts, the maintenance normally associated
with electromechanical devices is avoided. An additional
characteristic of magnetic butble technology is very 1low
error rates. Manufacturers' tests have produced bhard error

} rates of 1 in 1 trillion bits and soft error rates of 1 in 1
billion bi=s [Ref. 11: p. 2]. A hard error occurs when a
bit is read incorrectly during several consecutive read
operations. Soft errors occur when a bit is read
incerrectly c¢n one read cperation and correctly read on
suksequent operations.

The final area of evaluation deals with the physical
characteristics of the devices. Some additional propexrties
attritutable to the solid-state nature of magnetic bubble
devices are low powver requirements, light weight and
ruggedness. Magnetic bubble aesories may be sealed from the
outside world and, thus, are immune to the effects of dust,
bupidity, dirt and vibration., Like mcst other technologies,
however, magnetic tubble memcries do suffer temperature
ligitations, This 1limitation is due to <the required
matching of the <+~emperature coefficient of the <chip garnet

+0 that of the permanent aagnet. Currently, the specified

41

S ——————

operating temperature range for most bubble devices is fros
0 tc S0 dJeqrees Celsius but ancn-cperating temperatures may
range from -40 <to +85 degrees Celsius without 1lcss of data
[{Ref. 11: p. 2].

Magnetic bubble memory technology can provide a high
density, low power, rugged, rveliable and non-volatile data
stcrage media. I~ is expected that the «cost of bubble
memcry devices will continue to decrease and their density
will continue to increase, making them an even mcre viable
alternative mass storage technology [Ref. 12: p. 38].

B. APPLICATIONS OF MAGNETIC BUEBLE MEMORY

The variety of applications for magnetic bubble memories
is steadily increasing. As system designers begin to take
advantage of the ©properties of wmagnetic bubble amemory
devices, increasing numbers of butble memories are being
designed into systems, added on as back-up storage or used

to replace other storage technoclogies. The variety of

aprlications for magnetic butble devices includes wozd
preccessing, voice synthesis, portable terminals,

ccanudications, numerical machine tool ccntrollers,

aerospace and defense applications as well as others [Ref.

12: p. 38]. |

l
!
|
1 42 |
|
|

- ufrea sy STeees

The high fperformance and 1low ccst of magnetic bubble
devices are the two major characteristics driving most of
+he applicaticns. Current prices fer bubble memories are
roughly 100 millicents per bit with projected decreases to
less than 30 @millicents per bit in mid 1982 [Ref. 10: »p.
26]. Access times of currently available bubble memories
are approxima<%ely ten times faster than thcse of a@movable
head disks and the data <ransfer rates of the <two
technologies are comparable [Ref. 13: p. 53]. Some magnetic
bukttle memory systems have, however, attained data rates of
96 Mbits/saccnd and a system addressability of 4096HM bits
[Ref. 14: p. 141]. Ancther performance advantage is the
simple addressing scheme which requires only an address and
a read or write signal. It 1is estimated that a bubble
mnescry contrcller would have 1/4 o 1/2 the coaplexity of an
equivalent disk contrcller [Ref. 15: g. 37].

Another wmajor contrzibuting factcr to the increase in
aprlications of magnetic buttlse devices has been <the
development of custom interfacz and support circuits. These
integrated devicas free zhe systea designer from *he need to
beccme intimat2ly familiar with <the electrical and magnetic
prcper<ies of bubble memories, <thus, allowing mcre time to

be spent on the system aspect of the appiication. There are

43

~alsc many coaplete magnetic bubble memory system asseamblies

wvhich can be plugged directly into DEC LSI-11s, Intel
MUOLTIBUS systems, TI 9900s, S-100 systems and STD-bus
machines [Ref. 10:p. 26). Custom constructed systeas
require no separate chassis or power supply and can be
censtructad erntirely cn printed circuit boards that can plug
directly intc existing bus structures.

Research conducted by IBM (San Jose, Califcrnia) has
indicated that magne*ic bubtle memories must have a capacity
of at least UM bits in order tc challenge RAM devices on the
basis of cost. Bubble memory devices are approaching this
density with 1M bit dJevices currently c¢n the aarket
(TI31000, Intel 7110 and National NBEM2011). Reckvell has
demcnstrated a UM bit device developed under ailitary
contract and Bell Labs has fabricated an experimental 11.5M
bit bubble device which is only 1.3 inches square. [Ref. 9]

Since magnetic bubble memories are of a solid-state,
non-volatile technology, they are ideally suited for
pcrtable applications as well as for providing additional
s«crage for tradi+icnal and —gparailel processing systeas.
The ccmpactness, low power requirament, dquietness and low
maintenance requirement have made tubble devices idsal for

office equipment applicaticns., additionally, *the ruggedness

44

pa ks S £ e sy T AR L kL o Ll T

A
=
|

of the devices,

characteristics,

environments

apglications.

often

when combined with

mnakes them ideal for ause

encountered

4s

in control

e e ———

e

the

in th

and

above
e harsh
military

IV. DESCRIPTION OF THE DEVELOPMENTAL SYSTEM

A. TIB0203 MAGNETIC BUBBLE MENMORY

The TIB0203 magnetic-btubble memory is a noan-volatile,
92,304 bit, bubble memory chip. The chip is manufactured as
a 14-pin dual-in-line package which contains the coils for
previding a rotating magnetic field, a permanent msagnet to
maiptain data storage and a magnetic shield structure. The
TIEQ203 is designed as a conventicnal aajor/minor 1loop
architecture with 144 minor lcogs (circular shift registers)
of 641 bits each. Transfers of data to or froa the single
majecr loop are done in parallel. The major loop contains

——

+he detector circuits as well as the generate, replicate,

and annihilate contrecl functicns. (Ref. 16: p. 11]

Detection is acccmplished in a passive scheme utiliziag
twec magneto-resistive elemznts. T e elaments are ocut of
phase with 2ach other and cperate oan alternate cycles (viz.,
alternately reading bit positions). Noise produced in the
circuit dues ¢o circuit laycut, control pulses and from <*he
magne*tic fields is reduced Ly cancellation when the elements
are used with a bridge <c¢ircuit and an external differential

amglifier. [(Ref. 16: p. 14]

ue

Generation of bubble domains is done via nucleation as a
specified current pulse is sent through the generate loop.
Transfer-in is accomplished as follows: (1) a data string
equal in length to the numter of ainor loops (called a page)
is generated; (2) this string is shifted such that the first
bit is positioned over <the first wminor 1loop; (3) the
transfer gates are energized. Each of the 641 minor loog
page positions is useable. Transfer-out is accomplished in
the reverse manner, Once a page is on the amajor loop it is
eligible for one of two <cperaticns in a serial Etit-by~-bit
manner: replicate or annihilate. [Ref. 16: p. 11]

A replicate operation causes the bubble doamain to be

stretched, then split in twc with one bubble diverted to the

___detector and the other diverted back to the majcr loop and

suktsequently to the mincr lcop for stcrage. This procedure
prcvides for a non-destructive readout. Annihilation is
prcvided by transfering the bubkle domain off the majcr loop
and into the detectcr track where it is propagated off <he
chieg,

The chip 1i1s manufactured with 157 minor 1locps, which
prcvides a redundancy of 13 minor loops. Defective ainor
locps are identified at the factory and a magp is printed on

the device before shipaent. The map has <the addresses of

47

T ——

g TR

g

defective 1loocps printed in hexadecimal and it is the
rasgonsibility of the controller to prevent the use of these
bad loops. ([Ref. 16: p. 12]

The coil drive €for the TIB0203 uses triangular wave
forms generated from “wo orthogonal coils that are driven 90
degrees out of phase, A cycle is the time rasquired for the
magnetic field to rotate 360 degrees. Minor loops are
spaced two bits apart with one bit separation on the aajor
locp. Therefore, all major lcop cperations are performed at
half the drive frequency. The drive frequency for the
TIP0203 is 100 KHz. [Ref. 16: pp. 13-14]

The TIB0203's components angd specifications are
ccegletely described in Reference 16, the ®PIB0203
Magnetic-Bubble Memcry and Associated Circuits Magual."
Operating characteristics, block diagrams and environmsental
conditicns for the function timing generator, sense
amplifier, <function driver, <coil driver and theraistor are
alsc included in <this manual.

B. PC/M 4BB-80 BUBBLE MEMORY SISTEHN

MBEB-80 Bubbl-Board is the registered trademark of a
magnetic bubble device marketed by Bukbl-Tec, a division of
Pacific Cvyber/Metrixs, Inc., located in Santa Clara,

Califcrnia. The MBB-80 is a ccaplete bubble aemcry storage

48

system designed to te ccapatible with all 8-bit and 16-bit
nicrccoaputers that utilize Intel's MULTIBUS architecture,
The board provides 92,304 eight-bit bytes of ncn-volatile
mewory as wall as all required ceontrcl logic and buffering
necessary o interface to the MULTIBUS system.

The 2ntire system 1is contained on one nmulti-layer,
printed-circuit board. The printed-circuit board bkas the
standard MULTIBUS dimensions and requires one card-cage slot
on the MULTIBUS. The bcard is ruilt around eight (8) of the
TIEC203 bubble memory devices described in the preceding
section. All necessary support chips are included cn the
sinqgle boarad. The functicns cf the controller are provided

in hardwares and include the following primitive coamands:

#i1l1 Buffer Read Nultiple Pages
Empty Buffer Initialize

Arite 31ngle Page Read Status

Read 51ni e Pag Enable/Disable Interrupt
Write Mu tip1= Pages Reset

Host interface with the contrcller is via memcry-aapped 1/0,
using sixteen (16) consecutive user-defined locations in the
CPU address space. The MBB controcller can be set ¢to
raccgnize any sixteen consecutive addresses c¢n a 16-line or
20-line address bus. These sixteen addresses corresrond to
sixteen registers in the bubtble memory ccatrcller which are
u4ilized to read status informatioeg, set MBE-80 board
cenfiqurations and perferm read/write operaticas.

49

R o e

I N .

P
2

e TR e e

A
SOVOW ST

The M4BB-80 typically consumes less <than 20 watts of
pover, Voltage requiremcents consist of +5 volts at 1.5
amgeres, +12 volts at 200 milliamps and -12 volts at 700
milliamps. Logic is provided to protect stored data during
pover-up, pover-down and when unexpected power failures
Qccur. The MBB-80 can operate in a temperature range of 0
0 50 degrees Celsius. The magnetic environment is less
than 20 Oersted at the bubktle device and the toard weighs 18
ounces. A complete description of the MBB-80, its
printed-circuit board 1layout and schematic diagrams are
ccrtained in Beference 17,

C. DEVELOPHENTAL SYSTEHN

The INTELLEC Dcuble Censity Microcomputer Developaent
System (INTELLEC DD MDS) with an iSEC 86/12X single-board
coaputer, an iSBC 202 double density disk controller and <%he
CP/M4-86 (version 1.0 as modified by Reference 18) operating
system (hereafter referred to as CP/M-86) is the host systen
for this implementaticn. This systea is 1located in the
Microcomputer Laboratory at the Naval Postgraduate School,
Mcreerey, California, and will be descrited in greater
detail in the next section. This hcst system was found to
have a sevare inadaquacy iz the area of software develcopment

tocls. The current CP/M-86 oparating system had no

50

WY

interface to a printer. The CP/M-86 resident text editor
(EL) consists of relatively primitive comzands which do not
allow a wide range of text manipulaticrn. FPor these reasoas
an alternative system had to be chosen for use in software
develcpment.

"The tex*t edizor chosen was the screen-oriented editor of
*he aAl*os UCSD Pascal (Version 1.4b) system. Required Intel
8080 and Intel 8086 asseably lapquage programs were written
in files created utilizing the Pascal system editor. The
overall efficiency of scftware development was dgreatly
enhanced by the use c¢f this editor. Once a file vwas
corfpleted, it was transferred to the Altos CP/M-80 (Version
2.2) system by executing the 8080 asseably language prograas,
CEXFER, which executes under CE/M-80 (hereafter referred to
as Cp/M). CPXFPER is a Naval Postgraduate Schcol (NPS)
Microcomputer Laboratory utility program that provides for
the intersystem transfer c¢f formatted files between the
Altcs CP/M and Pascal operating systeas.

Once transferred to the CP/M system, Intel 8080 and 8086
assemtly language programs could be assembled utilizing tiae
s<andard, CP/¥ resident, Intel 8080 assembler (ASH) or Intel
3086 cross~-assembler (ASM86), tespectively. Err-arcs

anccunteraed during asserbly could be correczed utilizing the

51

CP/M residen* editor (TED) and a corrected copy cf the file
transferred back to <the Fascal system for purposes of
consistency. Once a programh is successiully asseabled it is
ready to be <+ransferred ¢to the INTELLEC DL MDS for
execution.

The In*tel 8080 or 8086 executable files (.CCM or .CMD §
respectively) are trarnsferred to the INTELLEC DD MDS by
utilizing «he NPS Micrccomputer Laboratory wutility prograa
called SDXFER for intersystem transfer of files Letween the
single density INTELLEC MDS and +*he INTELLEC DD MDS. Piles
can be transferred directly frca any CP/M compatible disk,

on either drive of ¢the single density MDS, to any CP/XM

compatible disk on either drive of the double density MDS,
utilizing SDXFER.

A1l complete assembly language fprograms are maintairned
on the Altos UCSD Pascal system disks only. The altos CP/N,
dcuble density MDS CP/M and double density MDS CP/N4-86
system disks contain cply executaltle files.

D. INPLENMENTATION HOST SYSTEAM
The final implementation utiiizes the freviously

mentioned host system ccnsisting of an INTELLEC Dcuble

Density MDS system and isBC 202 disk controller, Loth under

+he control of an iSBC 86/12A single-toard computer, and the

52

s e

o

€ EARNR ween A e v st =wn

CP/M-86 operating systenm. Initial 1low level bulktle memory
testing was conducted utilizing the INTELLEC DD MDS and its
ra2sident Intel 8080 microprocessor. After initial testing
of the device, all remaining development, testing and
‘msplementation utilized the iSBC 86,/12A and its 1Intel 8086
microprocessor instead of the Intel 3080.

The INTELLEC DD MDS is a coordinated, complete coamputer
systenm designed around the 1Intsl 8080 microprocessor. The
standard INTELLEC DD MDS system consists of an 1Intel 8080
microprocessor, +two (2) 32K oyte RAM memory wmcdules, a
moniter progran with six (6). fally iaplemented 1I/0
interfaces and a frent panel coantrol module, used to provide
a 256 byte boctstrap preogram, the eight (8) level bus access
centrcl circuitry and a real +time clock. These systenm
mcdules are contained in an eighteen (18) card chassis which
features the Intel MUOLTIBUS, which supports multi-processor
confiqurations and allows for "master-slave" celationships
between modules. The one addition to the standard system is
the use of an iSBC 202 double density disk coatroller aodule
+0 handle the dual f£lcppy disk dzives. (Ref. 19]

As previously mentioned, once vpast the initial testing
phase, the INTELLEC DD MDS system was operated with the iSBC

86,12A. This was accomplished by removing the <wo memory

53

i
1

bcards and the Intel 8030 CPU board and placing ¢the iSBC

86,122 in a bus-master slct (an odd numbered slct) in the
INTELLEC DD MDS chassis. The iSBC 86/12A is a single-board
microcomputer based on the Intel 8086 16-bit aicrcprocessor.

Included on the board are 64K bytes of dynamic BRAM, three

e bl it

prcqrammable parallel 1I/0 porzs, programmable <timers,
priority interrupt ccntrcl, serial ccmmunications interface
and MULTIBUS interface control logic. {[Ref. 20]

The CP/M-86 operating system utilized with the host

system is a product of Digital Research. The specific

operating systenm used was Versicn 1.0 with the modifications
made in Reference 18. CP/M-86 is a microcoaputer operating
system for Intel 8086 based micrccomputers. cp/M-80, the
predecessor of Cp/M-86, was designed for Intel 8080 based
micrccomputers and, as nearly as possible, file
compatibility betwe2en CE/4-80 and CPp/M-86 has been
maintained. CP/M-86 provides built-in utility ccmmands and
transient system prograas. Additionally, <the user has the
akility to execute use--defined <+tramnsient prograas. The
systea <transient prograss include a dynamic debugger
(DCT86), a primitive ¢text editor (ED) and an Intel

ccagpatible assembler (ASM86). (Ref. 18]

54

The entire implementation host system is located in thae
Microcoaputer Laboratory at the Naval Postgraduate School,
Mcnterey, California. Each of the individual conmponents of
the system (INTELLEC DD MLCS, 3iSBC 86/12A and Ce/N-86) is
described in great detail in <the reference listed after the

discussion of the component.

o AN liad da e s BRI g sk i fgatat o

V. W-LEV g v FAC
A. INTEL 8080 IMPLEMENTATIOCHN

Prior to interfacing +the MBBE-80 Bubbl-Eocard with <the
isSBEC 86/12a, initial testing was ccnducted by interfacing
the MBB-80 with the standard INTELLEC DD MDS system and ics
resident Intel 8080. The Intel 8080 was chosen for initial
MBP-80 testing because of the authors' familiarity with
Intel 8080 asseably language and because of the availability
and utility of the existing CP/M-80 operating system and
Supgpcrt programs (viz., DDT and TED).

Before any software interfacing or testing could be
attempted, the hardvare interface between the MBB-80
Bubkbl-Board and the INTELLEC DD MDS system had to be
ccnstructed and verified. This interfacing required +the
modification ¢f power circuits within the MDS system and
necessitated the addition of a manual powvwer-protect switch.
The mcdification of power circuits was required <to provide
the 0.550 amps at =12 volts required by the MBB-80
Buktkl-Board circuitry. The remaining powver rfequirements of
the MBB-80, 1.0 amps at +5 volts and 0.12 aaps at +12 volts,
are available on “he standard MDS system's bus. The msanual

power-protact switch was provided on an additional

56

develcpment board and was required to protect the bubble |
devices during norsal power-up and power-down. Bubble
device contamination, as described in Referemnce 17, can
result if <the bubble devices are accessed while <the power
supflies ar2 not within the specified toierance of plus or
minus 3 percent. The manual switch provides protection only
during normal power-up and rower-down. A more comprehensive
power-protect systenm will be needed to prcvide full
prctection against inadvertant pover loss in a production
system. [Ref. 17]

Software interfacing and testing of the MBEB-80 wvas
ccnducted by writing and executing an Intel 8080 assembly
lanquaqe program called DIAG80.ASM (a program listing of
DIAG80.ASM is contained in Appendix 4). This program
utilizes sixteen (16) consecutive addresses, beginning at a
prcgram defined bubble memcry ccntrcller base of 04000H, as
registers for communicaticn with the MBE-80. The Inhibit
ROF/RAM signals provided by the bubble memory «controller
allew the placement of +he controller base address and the
F‘s sixteen registers anywhere in the on-board 64K bytes of RAM
. nct in direct conflict with CP/M-80 usage.

Initial attempts at execution <c¢f DIAGS80 resulted in

premature program <termina<tion. Attempts at dekugging the

AN Foktin s, BRI vt = 4107 0 Wt b5 TN e ol <t 1 A e gt o1, DR " <

cmicniin, e

prcgram by using DDT failed because single-stepping through
*he program resulted in prcper execution. Full~-speed
execution, however, continued tc result in premature
termination at unpredictatle and unrelated points in the
prcqraam, indicating either a timing or a device
compatibility problen, Further investigatior revealed that
the termination of execution was accompanied bty a bus
*imeout signal from +the MLCS system (the bus timeout signal
is initiated when a bus request is made and no
acknowledgment signal is received within a specified tinme
interval).

Monitoring various signals with an oscillosccpe 1led to
the detection of an inccnsistency between the nmonitored
signals and the specificaticns cn the MBB-80 circuit diagranm
prcvided in Reference 17. While checking the ccaparators
(utilized to determine if an address cn the bus is that of a
bukble memory controller register), it was determined that a
signal of some sort was present on pin 7 of each of the
three comparators. The circuit diagram indicated that these
pins should all be connected to the common board ground.
Upcn contacting the designers cf the M¥BB-80, it was learned
that the circuit diagram currently being distributed was for
Version B of the MBB-80. The correct circuit diagraa, for

Varsion D, was acquired and testing resumed.
58

During subsequent calls to Pacific Cyber/Metrixs
perscnnel “o confirm or guestion findings, it was learned
+hat some special-purpose circuitry was connected to the
cceparators. This circuitry had been included for a special
aprlication design of <the MBB-80 and was incorporated onto
all bcards currently being distributed. He were given the
assurance of MBB-80 desiqgn perscnnel that this circuitry was
in no way affecting <the operation <¢f our Bubbl-Board and
that we could verify this ty "grounding® pin 7 of all of the
ccmgarators. Temporary “grounding straps" were placed on
all of the comparators to see if there was any affect on the
operation of the MBB-80, Subseguent attempts at executing
DIAG80 were all succrssful. Pacific Cyber/Metrixs personnel
ware informed of our findings. As a result, the designers
of the MBB-80 are currteéntly ccnsidering the inclusion of a
manual switch on future MEE~80 boards to allow the user to
select or bypass the specialepurpose circuiery.

With DIAG80.ASM <executing prorperly, initial testing of
*he MBB-80 was continued. Informaticn was written into and
rcad from pages of each device to verify that the bubble
devices were arror free. Additionally, dinformation was
written into the devices and fpcwer removed from the MBB-80.

The YBB-80 was 1lef+ for a 24-hour period and then data

59

retention vwas verified in each bubble device by reading back
the previously stored informatiom. Operation of the MBB-80
vas satisfactory and the lcw-level read, write, <cocntroller
initialization and device initialization routines had beea
verified to function correctly.

With initial MBB-80 interfacing and testing successfully
corpleted and the 1low-level routines verified, advanced
isplementation and testing wvwith the iSBC 86/12A was begun.
The low-level rou“ines were available for direct translation
into Intel 8086 assembly language and the DIAG80O.ASM prograa
available as a model for future program comnstructicn.

B. USE OF THE CP/M-80 MBB-80 DIAGNOSTIC PROGRAM

Tha CP/M-80 diagnostic program, DIAG8Q.ASM, was designed
and written for the purgose of testing ¢the hardwars
interface between the MBB-80 and the INTELLEC DD MDS systea.
This program provides 1low-level routines which allow the
user to verify correct vrite and read operaticns tc and froa
+he MBB~80. Although not originally intended to serve as
such, DIAG80 can alsc serve as a low-level debugging tcol o
aid in systems program development.

DIAG80 is executed by exscuting <the DIAGBO.COM file
located on the CP/4-80 systema disk. Execution will cause

+he MBB-80 <ccntroller and all eight (8) wmagnetic bubble

69d

dsvices *o be initialized in accordance with Reference 17.
The MBEB-80 controller base (defined in DIAGS8Y by a constant)
must be set to O4000H wutilizing the addziess selection
switches on the MBB-80. The program will then, at the
discretion of the user, cause an eighteen (18) byte page *o
be either written into or rsad from one of the eight
(8) magnetic bubble devices.

The user has the option of entering an "R" for a read, a
"Q" ¢c quit Or a "W"™ or any other character for a write. If
the user-specified ofperation is to read a page, the user
will ke prompted for the single-digit bubble device number
(0-7H) and the <three-digit page nuaber (000-2808H) of the
page to be read. The contents cf the specified page will be
printed to the CRT along with the <c¢ontents of +he status
ragister. If +he specified operation is ¢to write an
aighteen (18) byte page, the user will be prompted for the
twc-digit hexadecimal value to te written in addition to the
bubble device and page number of the destinatica. The
*wc-digi% value given by the user will then be written into
all eighteen (18) by<+es of the specified page. If the user
types a "Q", <¢to quit, <then the program terminates and a
return is made to the CPE/M operating systea. No error

checks are nade to verify correct entries by the user. If

61

T PPN

T |
. e e
UL s
- aaddis

input values are outside the specified ranges the progras
will not func+ion reliably.
C. INTEL 8086 INTERFACE CCNSIDERATIOMNS

The actual 3interface and isplementation of the bubble
menscry system vwere accomplished utilizing CP/M=~86 and the
isEC 86/12A single-bcard computer. Several local
modifications had to be made to the standard Intel iSBC
86,12A distribution board. The following description is
prcvided to allov the verification of a correct board
confiquration when either duplicating this thesis wvork or
continuing research on this systenm.

The address select pins for the iSBC 86/12A were
confiqured <tc place the computer?s on-board RAM in the
lowest 64K byt2 segment. Iherefore, address select switches
one (1) and eight (8) are "cn"™; all cthers are “off". The
following pairs of pins were ccnnected together (jumpered)
¢c provide the necessary interface tc the 1locally modifiad
Intellec DD MDS system: -4, 5-5, 68-76, 79-83, 87-89,
92-93, 127-128 and 143-144, The above iSBC 86/12A
modifications ars necessary fcr the ccrrect operation of the
iSBC 86/12A within the Intellec DD MDS system and are not

nacessitaced bty MBB-80 Bubkl-Bcard requirements.

62

PP S

The memory acquisition circuitry of the isSBC 86,122 will
reference RAM on the iSBC 86/12A bocard for addresses 0-64K
and onboard EPROM for addresses OPPCO0-OFFPFFF (hexadecimal).
Any memory referance outside these two ranges will activate
the MULTIBUS acquisition circuitry. Consequently, bus
override commands, or inhibit signals, issued over the
MULTIBUS within ¢he first 64K byte segaent vwill have no
affect on <+the iSBC B86/124's RAA. This Cequires that %tae
MBE-80's controller base be placed at an address cutside of
the first 64K bytas. Since the BBP-80Q co. zoller utilizes
meepcry-mapped I/0 to sizxteen (16) consecutive ameamory
lccations, any 16 addrasses that can be .nhibited, will
suffice,. It was decided to provide the user with tae
atility =o specify a segnent base address for the MBB-80
ccntreller in all of the CP/M-86 diagnostic (low-level
interface) programs. Since the MEB-80 can decoda 20 address
lines, the <controller's kase address space can ©be placed
anyvhere within <the 14 byte address space that isn't
occupied by RAM or B2PROM (which cannct be inhibiteq). Thae
address specified to <thess programs must correspond to the
address set on the MBB-80 address select switch.

In additicn to the MBEB~-80 ccntroller memory address

assignmen+, *he interrupt structur: also has an affect on

P o artemie e om s s - e s ppeaderim A

the iSBC 86/12A configuration. The MBB~80 has two modes of
operation: single-page wmcde and aulti-page acde. The
single~page mode, which requires no interrupts and vwvas
inpleneﬁted successfully or the Intel 8080, also poses no
prcuv.em for the Intel 8086. The aulti-page amode, hovever,
raquires that specific tising requirements be wet by the
host compu*er in ccapunicating with the MBB-30 ccntroller.
During <transfers of data, the host must respond to the
interrupts generated by tae ¥BB-80 every 160 amicroseconds
(signalling a coapleted transfer of one byte in a aulti-byte
transfer). These interrupts can be either generated over
+he MULTIBUS as "hard" intercupts to the iSBC 86/12A or the
1SEC 86/12A can "poll" (read) the status rTegister that is
within <+the address space of the MEB-80 ccntrcller. A
detailed dascription of single-page wmode, multi-page mode
and the raquired interrupts is given in Reference 17.

It was decided that the 1Intel 8086 implementation would
bz accomplished in steps. Pirst, a siample, single-page mode
prcgram would be written utilizing <he algorithas that were
tested in the 1Intel 8080 implementation. Since the
nulti-page mode provides approximately four (4) times the
effective =ransfer rate of single-page mode (45 Kbits/sec

versus 11 Xbi«s/sec), it was deemed essential to utilize the

64

multi-page mode of cperaticn in the final ofperating systea
interface. This required a decision on the methecd of
detecting and servicing interrupts, vhich led to <the
development of a multi-page mode prograas that could coerate
in the "polling” mocde or use ipterrupts generated over the
MOLTIBUS,. To handle interrupts over the MULTIBUS, an
additional modification was aade to the iSBC 86/12A board:
pins 72 and 80 were jumpered tc allcw IR1 (interrugt one) on
*he MULTIBUS to be processed as interrupt type 16 within the
isEC 86/12A micrccomputer via the on-board i8259
prcgramnmable interrupt ccntrcller (PIC). It wvas also
necessary to connect the IR1 interrupt on the MBE-80 board
itself, as described on rage 2-3 cf Reference 17, «which
causes MBB-80 generated interrupts to be sent over the
MOLTIBOUS on IR1. Along with the modifications to the
Intellec DD ¥DS power supply and to the MBB-80 Dboard
detailed in Section A <¢f this chapter, all hacdvare
interface requirements have now been described.
D. INTEL 8086 IMPLEMENTATION

The implementation of the MEB-80 Bubbl-Eocard with the
Intel 8086 was divided icto two phases, with each phase
having specific geoals. The first phase was the

implenmentation of a prograc which uses the single-page mode

65

of cperation on the MBB-80, vhere the Lasic¢ routines
develcped in the 8080 implementation would be utilized. The
goal cf this phase was to verify the successful operation of
the MBB-80 with <the iSBC 86/12A hardware using the CP/M-86
operating systenm. The second phase involved the
implementation of a Gprogram which uses the 3ulti-page mode
of operation utilizing either the polling mode or interrupts
generated over the MULTIBUS. The gcals of this phase were:
(1) verify that the multi-page mode of operation works; (2)
determine which interrupt method is most desirable; and, (3)
prepare and test software routines that can be utilized in
the final operating system interface.

The single-page mode prcgranm, hereafter referred to as
DIAG86S, was designed as a ccmplete Intel 8086 assembly
lanqguage diagnostic progras for the MBB-80, requiring little
operator intervention (as cpposed to DIAG80.ASM -- the 8080
version). The program will ccntinuocusly test every byte in
each magnaetic Dbubble device, recording all errors, until
axecution is terminated by the user. Thrse tasic functions
vere to be tested: (1) initializing the MBB-80; (2) reading
frca the MBB-80; and, (3) writing to the MBB-80.

The algorithms developed in DIAG80 for initializing the

MBE-80 controller and fer reading and writing a physical

66

buktkle page (18 by*es) were not logically altered. A direct
translation of <these routines was wmade from 8080 asseably
language to 8086 assembly language.

I+t was considered desirable tc wutilize the Intel 8086ts
seqmentation features to allow the future use of the full 1M
byte address space available in t he Frocessor.
Consequently, the simple "€080 memory model" was rejected in
faver of +*he "compact memory model" which utilizes aultiple,
user-controlled segments (see Reference 21, pages 7-9, for a
conatlete description ¢of <hese models). Code segments (CS)
and data s=2gments (DYS) are used only for code and dacza
rTespectively, while the extra segment (ES) is used to
address the MBB~80 ccntroller ports at a user-definsd base
address (see Reference 22 for a description of ASM86 and
segments).

DIAG86S was vwritten and tested. During debugging,
roytine code and 1lcgic errors were encountered but no
prctklems <relevant <*“o this specific implementation were
discovarad. Execution cf this prograaz on the iSEC 86,1224,
under the CP/M-86 operating system, achieved all of <he
stated goals for this phasse of the 8086 implementation. A

coggplate listing of DIAG86S.A86 is contained in Agppendix B.

67

P —

The multi-page wmcd= prcgram, hereafter referred to as
DIAGS86M, is a3 diagnostic prcgram that performs the same
furctional diagnostic tests as DIAGS86S. In meeting the
stated goals of this phase in the Intel 8086 implementation,
several important issues wvere addressed. Pirse, the
prcgramming o¢f suitatle interrugt handling mechanisms to
service both MULTIBUS and pclled interrupts from the MBB-80
wvas necessary. Second, a methcd for evaluating the
desirability cf <these methcds was needed. FPinally, the
routines that perfcrmed specific bubble memory functions had
+0 ke in a form suitable £fcr direct application in the next
step of this thesis, the isplementation of the interface to
+he CE/M-86 operating system.

The two methods of handling interrupts are prcvided by a
conditional assembly variable in LCIAG86M. The boolean
status of this variable (documented in the code) determines
whether code 1is generated for a MULIIBUS interrugt or for
<he polled mode of cperaticn. For the MULTIBUS interrupt
(in addition %o the abcve mentioned hardware mcdifications)
three steps are regquired: (1) set up the irterrupt vector
in Cp/M-86 1low memory ¢c handle the IR1 signal from the
MULTIBUS; (2) program a trap bhandler at this interrupt

vector; and, (3) programming the i8259 PIC tc reccgnize and

68

prcgerly interprat the interrupt coaming in over IR1. A
sigple semaphore, set by the trap hapdler and interrogated
by +the bubbla routines, is utilized <¢tc¢ signify ¢the
occurrence of an interrupt from the MBB-80. The use of the
polled mode merely requires the interrogaticn of the
interrupt flag register at port offser OFH in the ftubble
megcry contrcller.

Bcth +he interrupt oscda and the polled wmode were
successfully implemented. Execution times for coaplete
diagnestic runs were 47 seccnds for both methcds (timed wvith
a conventional stopwatch). Pue to the extra code and
hardware modifications required for vector initialization,
the decision wvwas made +to utilize the polled mode in the
CP/M4~-86 operating system interface. dlthough this approach
ligits a future applicaticn with aultigple processes
reqguiring priority interrupts, this approach is consistent
with the polled interrupt structure utilized Ly disk systeams
+hat are generated and distributed with the Cp/H-86
coerating system by Digital Research. It should be noted
+hat the code and hardware modifications for <the use cf
interrupt vectors included in <this chapter are completely
functicnal for future applications that require a

prioritized interrupt structure using the MBB-80.

69

The bubble memory initialization routine used in DIAGS6HM
ig in the same form as that used in DIAGS6S. However, the
read and write routines used in DIAG80 and DIAG86S are based
on using a physical, magnetic bubble wsemory, page nuaber as
an addressable unit for each transfer. Therefore, the
fcundation for the memory organization of +the MBEB-80 was !
develcped which would be ccmpatible with that expected by a
CPs/M disk structure. DIAG86M views the transfer as that of
a lcgical CP/M sector of 128 bytes. Since a physical Lbubble
page is 18 bytss and 128 is not an even multiple cf 18, the

last sixteen bytes of each logical bubble "sector®" (144

bytes) will be ignored (wasted). A logical CP/M sector
consists of 8 bubble pages ¢f which the last 16 bytes on the ;
last page of a bubble "sector" are not used. There are 640 !
bukble pages per device (chip), so there are 80 lcgical CE/M |
sectors (as well as 80 bukble ‘"sectors®") on each bubble
device. The access of data on the Bubbl-Board ncw requires
orly a device number (0-7) and a "sector" auamber (1-80) on
that device. A routine tc convert a "sector" nuaber %o a

star*ing page number of an eight page "block" was writtan

and tested. This routine *akes intc account the fact that

+*he multi-page mode requires a "skew" factor of 322 on each

ccnsecutive bubble page access., This skew factor allowus the

70

rapid access of pages withoyt wmaking complete shifts of the

majcr loops in the magnetic bubble devices. Matheématically,
the starting page numkter is computed as followus:

SPN = ((SN-1) * 12) aod 641

where SPN = starnins paggrgunber (0-6&05)

SN_ = MBB-8U f%seéc number 41-7
mod = modulo division (remainder)

A ccmplete description of this "skewing” operaticn and the
necessary programming considerations is providecé on page
3-13 of Reference 17,

DIAGB6M was written, tested and debugged in both the
interrupt mode and the polled mode of operation. Bxecution
of this program on the iSBC 86/12a, under thke CP/M-86
operating system, achieved all of the stated goals for this
phase of the implementation. A complete program listing of
DIAG86M.A86 is found in Aprendix C.

B. USE OF CP/M-86 MBB-80 CIAGNCSTIC PROGRAMS

DIAGB86S.A86 1is a siangle-page mode, 8086 assembly
language diagnostic program for the MBB~80. Its furpose was
to verify the correct operation of the MBB-80 under CP/M-86
but it can be used as a functional diagrestic prograa.
Sirce it operatas in sirngle-page acde, no supporting
intercupt structure is necessary for execution of this

prcgraas.

71

This diagnostic is invoked by executing the LCIAG86S.CMD
file on the CP/M~-86 systea disk. The program will print
apetropriate messages and then request that the user key in a
feur (W) digit, segaent base address for the MBB-80
contrcller. Qply four digits can be keyed in, followed by a
carriage return. Keying in more than or less than four
digits, or invalid hex digits (viz., 3ot in the range 0-F),
will cause <the printing c¢f an error message and the user
will then be asked ¢o re-enter the segment base address.
This segment base address consists of the high order 16 bits
of the 20-bit address that is ghysically set on the MBB-80's
address select pins. The address keyed in aust match the
MBE-80's address and the WMBB-80 must be plugged into the
INTELLEC DD MDS systen with the power-protect switch
enabled. Selection of a base address aust fcllow the
constraints as specified in Section C of this chapter. 1f
these procedures are not followed, the prograam will 1ot
execu%e reliably (the program has no wvay of kucwing where
the MBB-80 ccntroller aas been physically placed in the
address space or if it is correctly powered up).

The program will then tegin the testing of every byte on
the MBB-80 boarad. Each d&vice will be tested, in turn, by

writing and then reading back a random pattern (tyte) one

72

page at a tinme. As each device is finished, a message so
indicating will be printed. Once all devices on the board
have been tasted, a summary of errors (if any) for that pass
will be listed and testing will automatically continue.
When the user wishes to discontinue testing, the keying in
cf any character followed by a carriage return will
terminate testing at the gcompleticn of <the current pass.
Any errors encountered will be listed, indicating the bubble
device number (0~-7 hex), the bubble page numbeér (000-280
hex), the byte number within the page (0-11 hex), the
pattern written and the pattern read back (in error). The

occurrence of an arror does nct halt testing. Testing is

continuous until the user halts execution by conscle input.
#hen the program is halted, control automatically returns to
the CE/M-86 operating systen.

DIAGB6M.AB6 is a nmulti-page amode, 8086 asseably
lanquage, diagnostic prcgraa for the MBB-80. Its purpose is
tc provide a production version of a diagnostic prograa
Q;; which ruas under CF/4-86 and which can also Le used to

i verify the <correct operation of an M4BB-80 Butbl-Board.

DYAG86M is functionally equivalent to DIAG86S.A86, except

+hat DIAGS80 runs in multi-page mode and thus, executes

approximataly four times faster than DIAGS86S.

73

This diagnostic is invcked by executing the DIAG86M.CMD
file on the CP/N-86 system disk. This program presents the
sase messages as DIAG8B6S and all instructions relevant to
DIAGB6S apply to DIAGS6M.

There are, however, some special notes regarding the
execution of DIAGB6N. As explained in Section D of tkis
chapter, +*here are $wo possible versions of this prograa,
differentiated by a conditional assembly switch. One
version uses interrupts generated over the MULTIEUS, while
the other uses “he polled scde which interrogates the status
of the MBB-80 controller. The "sign on" message will
indicate which version is runnirng. Since the polled mecde of
operation is used in the final CP/4-86 interface, this
version is found on *he system disk. The MULTIBUOS vectored
interrupt versicn requires that the hardware modifications
tc the MBB-80 Dboard's interrupt pins and the iSBEC 86/12A's
interrupt pins be made (as described in Section C of this
chapter) before program execution begins.

DIAGS6M.CHMD is <the primary tcol fecr rerforming
diagnostic testing of MBB-80 Butbl-Boards. It alsc provides
a method of performing acceptance tests of newly purchased
MBE-80 Bubbl-Boards. The usec-specified base address for
+he coniroller allows <the testing of any MBB-80 that is

currantly plugged in%oc the INTELLEC CD MDS systea.
Tu

ciah il i

bad lodica Snhcus o
.

VI. CP/H-86 INTERPACE INPLEMENTATION

A., BUBBLE DEVICE STORAGE OBGANIZATION

The CP/M-86 interface design consists of tvo gparts: (1)
the ipplementation of the MBEB-80 such that it will be
functionally equivalent to a floppy disk generated for the
CF/N-86 operating systeam; and, (2) the generation c¢f a basic
input/output system (BIOS) for the CE/M-86 ofperating systea
to irnclude any combinaticn ¢f disks and MBB-80 Butlkl-Boards.
This section will descrike bLow the MBB-80 Eubbl-Board
logical interface is made tc appear as a "standard" disk to
+he CP/M-86 operating systea.

CP/M-86, as does any CP/M system, uses two parameters
when communicating with disk devices: tracks and sectors.
The MBB-80 uses two differert parameters: pages and devices.
The translation of the 18 kyte, physical, bubble page *o
that cf a 128 byte CE/M sector was described in Section D of
Chapter v; This organizaticn configured <the MBB-80 as
consisting of eight devices (0-7), each with 80 “sectors"
(1-80) of 128 bytes/sector. The remaining rroblem is that
of mapping a CP/M track and sector tc a corresponding MBB-80

device number and an MBB-8Q "sector" number.

75

RSy Py < . Y e

R b ot M Lt

LA L 5 AR o SRR 5 s 5 et Paa, < v v r L

The BIOS in CP/M-86 has provisions for declaring the
numker of sectors per track on a given disk, as well as the
tctal capacity of that disk (which implicitly iamplies the
nuasker of tracks). It was decided that each MBB-80 “track"
would consist of 26 sectcrs, which is equivalent to the
nugker of sectors per track of a Cp/M-formatted
single-density disk. This guaranteed compatible, if not
optimal, use of +the built-in CP/M blocking routines which
are designed for tracks that have 26 sectors (or multiples
+“herect).

Addressing each of the eight devices on the MBB-80
Bukbl-Board regquires additional socftwvare in that each
individual device nust te separately addressed vhen
accessed. Therefore, any logical storage organization that
caused the overlapping ¢f 1logical sterage units from one
physical device to the next would have required additional
softwvare and, thus, incur a performance degradation.
Ccnsequently, it was decided that any given MBB-80 ™track"
wculd be e2ntirely ccntained on cne device. Since there are
26 CBE/M-86 sactors per track on a single-density disk and 80
"sectors" on an MBB-80 device, tkere are 3 "tracks" per
device with 2 ‘“sectcrs" nct used (wasted) cn each device.

Since there are 8 devices on an MEB-80 board, the total

76

o M s e 0 MR S - AR L sl el i e s

carvacity of +tha MBB-80 wused would be 78K bytes on 24
"rracks" with a “otal of 14K bytes not used (wasted). This
firal storage organizaticn is shown in Figure 6.1.

A method for mapping to this logical organizaticn froas a
CP/¥-86 sectcr call cr track call was needed. The track
marping was the simplest. Mathematically, the device nuabar
is computed as follows:

DN = TN div 3

vhere DN = H¥BB-80 device number (0-7)
TN = CP/M-86 track number requested
3iv = integer division (disregard reamainder)

Por reasons of efficiency, <this translation was iaplemaented
with tables rather than with arithmetic coaputaticns at the
assemtly language level.

The sector mapping, hovever, presents a acre coamplex
prcklen. As can ke seen in PFigure 6.1, tubble "sector"
nuskers range from 1-80 contiguously, across three "tracks“,
on each MBB-80 Jdevice. CP/¥-86 uses a range cf sector
rumbers between 1 and 26 on gagh track for a single-density
disk. Given a requested CP/M-86 sector and track number,
t+he corresponding MEB-80 “sector" number 1is c¢oamputed.
Mathematically, <he "sector" nuamber is computed as follows:

SN = (26 * (TN mod 3)) ¢+ SEC
where SN = MBB-80 "sector" numkter (1-78)

TN = CP/M-86 ¢track number requested
nod = modulo divisicn (remainder)
SEC = CP/N-86 sSector number reques<ted

77

i

—

uorjeziuedrp a8er03g 1ed213077 OB-YGW 1°9

2an3y1y

08 103d8s .
\\Uvn\HMWWWM\M\

DETEGI

|~ G8_2571>45

gL 103085

£ .
joeay, .

¥G X0308S

£G I03098

ZG I0131098§

ze :
yoexy, .

8¢ 1031035

L2 X03D089s§

9¢ 1031098

1¢C .
oexy .

7 1019098

I 1031088

L @d1A83q

S 2 \\ \ mj
| 6L 203395~ T6 332355]
g8, 101088 aL 103055

S o z :

yoexyg . yoers “

_ b5 xo3oes B

__£5 103038 " §g 163595
Z2G JX013108S 7C 3031058

b . 1 :

j}oexy, . yoexy, .
g7 X031D083Ss gz i0300S
LZ X03D93S Lz 103058
gg 103088 57 103055

€ . 0 .

A0E 1y, ” yoexy, .

¢ X03109s8

1 I03D03§

p—-

Z X013d8S

I x0308s

I ®0TAaQ

0 ®0TAaqd

o0

~

_—
|

st

v

Again, for reasons of efficiency, this translation vwvas
implemented wvia tables <zrather than coamputed with the
assembly language. The term " (26 * (TN mod 3))% is derived
in the table lcokup a+ the same time that the CP/M-86 track
is teing translated %o a butble device number.

Given an MBB-80 "sectcr®" numkter (1-78), the physical,
starting bubble page number can Dbe computed (this routine
was developed during and is explained in the Section D of
Chagpter V). For convenience, the formula for computing the
physical, starting page numkter is repeated here:

SPN = ((SN=-1) * 12) nmod 641
where SPN = starting page number (0-640)

SN = MBB-80 "sector" nuaber 41-78)
a0d = modulo division (remainder)

The computation of <+he physical, starting page ctumber was
implementesd with arithmetic statepments and repetitive
structures in the assembly language.
B. CE/N-86 BIOS CONSIDERATIONS
1. t ta t

The CE/M-86 operating system, as written Lty Digital
Ressarch, ccntains +three parts: the Console Ccmmand
Prccessor (CCP), the Basic Cisk Operating System (BDOS) and
*he user-configurable Basic I/0 Systaam (BIOS). The CCP and
BDCS portions of CP/M-86 occupy apprcxiaately 10K bytes and

are distributed as a single hexadecimal code file (CPM.HB6).

79

PR

The CCP and BDOS coamunicate with physical devices via a

well-defined interface in <he BIOS. This interface is a set
of call and return parameter conventions for <the specific
functions used when the CCP and BDOS commdnicate with the
BICS. The BIOS c¢ontains all device-dependent code. A
complete specificaticn c¢f the functional operaticn of the
CCF and BDOS, along with <the Jdescription of <the BIOS
interface, is contained in the CP/M-86 System Reference
Guide (Reference 21). This section will describe the
apgroach used in s<“ructuring a customized BIOS which
prcvides an interface to both conventicnal CP/n-86
peripherals and the MBB-80 magnetic bubble device.

CP/M4-86, as distributed by Digital Research, contains a
saaple, skeletal BIOS which can be utilized by a user to
confiqure a customized BIOS. This skeletal BIOS is wristen
in 8086 assembly language. A primary goal of this
isplementation is tc provide a BIOS that can te easily
modified and maintainegd. It was therefore «considered
essential to develop a BICS that consisted of structared,
lcgically fupctional subroutines, within the constraints of
the CP/N-86 physical component dinterface requireaents. I«
was also considered nszcessary to provide adequa*e

dccumentation within *he prograa code. all subroutine input

30

O,

and ocutput parameters must be clearly defined. All modules

that call a subroutine are listed in that called
sutroutine's documentation (in the code). The use of
external branches out of a subrcutine is not ailowed and all
sukroutines terminate with a single "rectura" (viz., no
sutrocutine is allowed to "fall through?” to another section
of ccde during execution). Naming conventions for
constants, variables, 1labels and subroutines are consistent
and meaningful and all identifiers are located in
alphatetical crder in logically-related secticns for ease of
lccation.

Although the above riles aay Tesult in some
less-than-optimal execution structures froam the viewpoint of
speed, maintainability and ease of modification are
essential goals. The primary purpose of this implementation
of a BI0OS, to provide a useable magnetic bubble system, can
cnly be fully realized in a system that will allcw for the
custom mnodification of the Iiaplemented hardvare and the
suprorting softwarae,

2. A tuged A o the

The CCP and BDOS pcrticns of CP/M-86 are designed to
interact with disks. Tyrically, an iamplementation of a

specific disk unie, vith a n@micrccomputer runniag undar

81

~ t
)
i |

CE/M-86, involves only g¢pe kind of physical disk unit,

This, ¢f course, results in the simplest BIOS. However, the
CCE and BDOS, in interacting with the BIOS via a standard
interface, have a lcgical structure which will allow almost
any combiration of physical devices to be implemented in the
BICS. The only requirement is that the BIOS preserve the
s+andard interface to the rest of CP/4-86. It is this
structural characteristic of the CP/M-86 operating systeam
that was found to be very useful in this iaplementation.

The interface between the porticns of C?/M-86 that ars
relevant to this implementatico concern the "logical disk*
interface. The CCP and BDOS are "aware" of ugp to 16 logical
disks, which CP/M-86 will address via the f[parameters disk
nusber, +rack and sector. It is this interface which must
be preserved by any Cp/M-86 BIGS implementation.
Additionally, this BIOS aust support the combinav’' ~n of
s+*andard <floppy disk devices and MBB-80 Bukktl-Boards.
Consequently, a s*ructured approcach is used within the BIOS
itself for this implamentation.

The BIOS is logically divided into four different areas:
(1) s+tandard CP/M-86 interface jump vectors; (2) subroutines
vaich suppo~+ communication with specific devices; (3)

-yoi+3 €hich 12€ine the physical characteristics and

configuration of the "disks": and, (4) sutroutines which
operaze (withcut modificaticn) on these tables (even though

the tables may be changed).

This approach prcvides a tatle-driven BIOS. A BIOS of

this structure can be casily altered and allows for ease of
confiquration modification. Subroutijes that provide
specific device communicaticns (viz., initializaticn, read a
sactcr or write a sector) wmust be dritten fer each type of
d=vice supported in the BIOS (a type 1is a specific
dcutle-density disk, hard disk, M2B-80, etc.). Tables are
coded which describe the physical specifications of each
logical CP/N¥-86 disk (viz., numker of sectors, directories,
cagacity, =2tc.). Tables are alsc coded <«o prcvide ¢the
necessary informa*icn tc suppcrt the @mapping cf logical
CE/4-26 disk nuabers +«o the reguired paysical paraaseters for
a rparticular type of device (viz., osase addresses and
internal disk numbers). These tables are fully described in
Szcticn D of this chagter.

Finally, <+he inclusicr ¢f alli confijuration~dependent
infcrma*ion in “he <+ables allows for ease of aodificaticn.
prcvided that no new device tyres are generated (which would
require device-specific rcutines), the configuratica (nuaber

and <+«ypes of disks) can be changed entirely within tha

83

tables without modifying the BIOS ccde itself. These tables
are "included" into the BIOS code during assewmbly. A
cosplete description of the BIOS generation will also be
given in Section D of this chapter. A1l code 1in the BIOS
which requires device-dependent inforamation to rperform its
task will be designed <to cperate directly on the tables.
This rrovides for a very modular iasplementatiocn.
3. dJduap YVector Ipterfaces
Entry to the BIOS from the CCP and BDOS is through a
jusg vector. The jump vector is a sequence of 21 three-byte
jumg instructions which transfer program «contrcl to the
individual BICS entry points (subroutines). Jumap vector
elements are in a standard order regquired by Cp/M-86. Each
BICS entry pcint corresgonds to a specific function, or
+task, %0 be performed by <the 3I0OS for the CCP and BDOS.
fach function has specific interface paraaeters (passed in
designated registers) which must be adhered to irn any 3I0S
isgleaentation. All of these jump vectors, <he BIOS entry
points and <+heir asscciated paraseters are given on pagas
56-64 of Raference 21.
Many of the functionrs in the BIOS need not be
isplemented and are 3imply coded as a “return" (i.e., <the

LISTOUT jump vector). Other functions deal with table "look

84

ups”" within the BIOS on behalf of the CCP and BDCS. This
saction will be concerned with the jump vectors that require
"knowledge"® of specific physical disk devices. A complete
dascription of the CP/M-86 jump vectors is found on pages
59-61 of Reference 21.

The MINIT" jfump vectcr's function is to perfora all
initialization necessary for CP/M-86 that vas not
accomplished in the BOCT ©EKCM c¢r LCADER procedures. The
WINIT" jump vector asust be aocdified to perferm all device
initialization necessary. In this ispleaentaticn, device
initialization consists cf calling a subroutine that
rerforas initialization for all of the M4BB-80 Bukbl-Boards
that are 1logically and thysicaliy part of the systea.
Additionally, the default CMA address (20-bit, segment and
offset) must te converted and stored as a 16-Ltit address for
all devices that <require a 16-tit address (viz., the iSBC
202 disk controller).

The Jump vector called "SELCSK™ has the function of
selecting a disk for the next read cr write, The BDOS call
parameter is a logical disk nuaber and the return paraamecter
ie the disk parametaer header (DFH) fcr that deévice. The DPH
is a standard <¢table withir CP/M-86 (BIOS) which describes

the physical attributes of each disk and will be described

85

Cav e ———
g

in Section D of this chapter. These basic functions vere
nct altered. Additionally, however, upon selection of a
CE/N-86 logical disk nuaber, it is necessary to perform
caertain tasks. Given the logical disk nuaber, a table is
used to determine the tyre cf device to which this disk
nugker corresponds. If the device is a floppy disk, a
mafpring must be made to the physical disk ousber within the
flcppy disk centroller (0-3 on ¢he iSBC 202 douktle-densicy
isk controller used in this isplementation). If the device
is an 4BB-80, the base address for the memory-mapped I/0
ccntreller aust be obtained. “SELDSK" aust be mocdified to
perfcra these functions by subroutine calls and to store
tkis informa<icn for later use.
The jump vector called “HOME® has the function cf moving
a disk read head to !ts hcme pcsiticn (track 0). There is
po hcme position for the MER-80 Bubbl-Board. Consequently,
"HCHME™ aust <check the device type and if it is an 4BB-80,
the hcae rcequest is <¢ranslated into a request to set the
track <0 zero (as required Lty CE/N-86).
The jump vector called SETTRK® has <the furction of
setting the track for the next read or write. The track
nuzker is passed in as a parameter. CP/4-86 supports track

rugbers in *he range 0-6553¢. This allows the mapping of a

86

wide range of CP/%-86 track numbers directly tc physical
track numbers within disk controllers (viz., 39
translation). However, the MEB-80 storage organization
requires the mapping of CE/M-86 track nuabers to an MBB-80
device number and ¢toc a "sector" offset within that device.
"SETTRK" aust be modified ¢to perfora this function (by
subroutin2 call) and to store this derived information for
later use.

The “READ®™ and "WRITE"™ djump vectors have the function of
performing a sector read (cr write) tc (from) the specified
disk number at <+the specified track and sector. Normally,
these vectors perfcra the actual operatior directly by
passing a channel command wcrd to <the disk ccntrcller for a
sipgle devicae. However, the MEE-80 requires entirely
different routines <¢c perfcrm a read or wvrite operation.
Therefore, "READ" and "WRITZ" aust deteraine vhat 3ype of
device is currently being utilized and then call agpropriate
suktroutines to perform MEB-8C <reads and writes. The
routiras <+hat actually ©perform the =rnon-standard device
(viz., ¥BB-80) read ard write operations aust also perfora
all necessary lov-~level nmagrings. In this implementation,
4he MBB~80 read and wvwrite subroutines will call ¢n a sector
+ranslation subroutine tha+ will wmap CP/M-86 sectcr numbers

+c MBE-80 "szectcr"™ numbecs.
87

It should be noted that all device-specific details have
been excluded from *he jump vectors and coded within the
device-specific subrcutines. Jump vectors merely deteraine
what type of device is being used (via tables) and then call
appropriate subroutines. Although this BIOS iaplementation
is specifically for the isSBC 202 disk controller and the
MBE-80 Bubbl-Board (as the two ¢types of logical disks), it
can be easily modified to include 3ggy other type of disk
device or magnetic bubble system as well. Operations that
are dependent on a specific device type are isclated in
specific subroutines, As described above, maintainability
and 2ase of configuration aodification have been designed
intc the structure of this BIOS implesentation for CP/N-86.
C. USE OF THE CP/HM-86 HNBB-80 PCRNAT EROGRAHN

MEBOPMT.A86 is a sulti-page mocde, 8086 asseably language
prcgram which formats the MBB-80Q Bubbl-Board <o meet 1IBA
comspatibility standards. This format is the required format
fcr "new" CP/R-86 disks and consists of the hex pattern "ES®
in gayery 3data Dbyte cf <the disk. The prcgraa uses tha
aulti-page polled mode tc write the patvern to the MBB-80.

This format program is dinvoked by executing the
MBEOPMT.CMD file on the CE/M-86 systea disk. The prograa

will print appropriate messages and <hen reguest that “he

88

user key in a four-digie, seguent base address for the
MBE-80 controller. only four digits should be keyed in,
follovwed by a carriage return, Keying in more or less than
four digits, or invalid hex digits (viz., D0Qt in the range
0-F), will cause the priating of an error message and the

user will +hen be asked to re-enter the segment base

3 address. This segment base address coansists of the high
ocrder 16 bits of the 20-bit address that is physically set
on the MBB-80's address select pins. The address keyed in
sust match the ¥BB-80 ccntroller's segment base address and
; the NBB-80 must be plugged into the INTELLEC DD MDS systes
vith the pover-protect switch enabled. Selection of a base
address sust follow the constraints as specified in Section
] C ¢f Chaptar V. If these fprocedures are not followed, the

’ prcgram will not execute reliabiy (the progras has no way of

-
? kacwing where tae MBB-80 contrcller has been physically
{ placed in ¢the memory address space or if it is correctly
L pcvered up).

%i The program will <then ltegin vriting the hex pattern to

f every byte on the 4BB-80 board. So further operator actlion
{ is required. Each device (0-7) will be written to and, as
each device is formatted, a message so indicating will be

printed. Upon program completion, the “formatting complete”

89

- - T T T e o - % — | AN mn 2 i an

RPNy

R e

B

bt ek bt ot

message will be printed and contrcl wili return to the
CP/N-86 operating systen.

Since the polled mode is wused to implement the
multi-page nmcde cf operzation, there are no special
considerations for running this program. The user-specified
tase address for the contrcller allows the formatting of any
MBE-80 Bubbl-Board +that is currently plugged into the
INTELLEC DD MDS system. MEBOFMT.CMD provides the only means
cf preparing an MBB-80 Zubbl-Board for use as a "disk"“
within the CP/M-86 operating systes.

D. CPs/H-86 BIOS IBPLEHENTATION
1. Hodificatiop of the Existing BIOS

The hcst CP/¥-86 systesm, 28 described in Reference
18, contains a custcaized PIOS supporting a single iSBC 202
disk controller. This host BIOS is used to gJgenerate the
LCADER BIOS as implemen<ted in both the host systea's BOOT
RO® and LOADER progras. The hcst BOOT R0M requires that a
physical iSBC 202 disk be present in drive nuaber 0 for boot
lcading (tzacks 0 and 1). However, nc restrictions exist as
to the actual disk configuraticn that can be initialized and
run by CPM.S5YS (in its BIOS), which is read into RAM by the

Lcader prograam.

20

S T TR

The basic routines for console dinpuzt and output

ccntained in the BIOS of Reference 18 were considered
acceptable for use in this isplementation. All octher juap
vectors either required modifications as descriked in the
preceding section or were pot considered to be consistent
with +he structured standards of <+his implementation.
Consequently, all of the jump vectors were re-coded.

The device-dependent 1rcutines supporting the isSBC 202,
fcund in Reference 18, were also incompatible with the ;
structured standards and goals of this implementation.
There was auch redundancy and inefficiency in the algorithas

and in the iwmplementation as reflected in the code. In

addition, the indexing methed for wmapping error codes to
error aessages for <+he iSBEC 202 was found to be incorrect.
Therefore, all routines relating ¢to the iSBC 202 wvere
re-written to vperfora correctly and to coincide with the
standards and structured apprcach of this implementat. ~a.
Obviously, the single iSBC 202 centreller implementation of
Raference 18 was limited to a sirgle disk devics. The

isplementation presented here is based on a taktle-driven

BICS +hat directly supports up <to sixteen (the CP/M-86

maximug) disk drives which can be cf two different types of

§ ' devices. This necessitated the developament of an entirely

91

A s L i

LS il NN

[

new BIOS structure which resembles the BIOS cf Reference 18
and the Cp/%-86 distributicn BIOQS only im its preservatiorn
of the required jump vector interface standards.

2. Disk Parameter Iable

The tables whick determine the physical disk device
characteristics of this CP/M-86 BIOS implementation are
ccrtained in two separate files. One file contains the
specific davice <characteristics of each device, while the
other file determines the currently generated configuraticn
of disk devices.

The family of standard CP/M operating systems is
designed to accept a tarkle-driven specificaticn for the
physical characteristics of each logical CP/M disk device.
These tables are called "disk definition tables"™ and consist
of a disk parameter table fcr each disk generated as well as
the scratchpad wvwork areas for the operating system. The
user is able to specify the nuaber cf iogical disks to be
generated (0-~16), along with the characteristics of each
disk (each having a separa*e entry). These characteristics
include: <he 1logical disk nuaber, first and last sector
nusber on each track, opticnal skew factor, blocksize, 4disk
caracity, <*“he number of directory entries, checked entries

and <¢the naumber of tracks to rese:ve for the operatiag

92

o

systen. These parameters are specified in a file.
Ncrwmally, the same tﬁpe of device has the same paramseters in
every occurrence of that device type in the file. The only
parameter that changes for devices of the same type is the
lcgical disk number.

This file, containing the disk parameters, is used as
inrut to a CB/M-86 utility program cailed GENDEF. This
utility +akes as irput a file <called filename.DEF and
prcduces an 8086 assembly language scurce code file called
filename.LIB. This output file contains the generated
buffers, tables and scratch work areas needed by CP/M-86 %o
ccoagunicate with each disk device. A complete description
of this disk parameter table generation and specification
prccedure is included on pages 65-73 cf Reference 21.

The file generated by the GENDEF program is vused ia an
ASE86 "include"™ statement (viz., inserted intc the BIOS
code) *o be assembled within the BIOS. The disk parameter
definitions (to bhe input <to GENDEP) used for <this
isplementation are included in the file DKERM.LEPF. This
definizion allows for three "disks": two 1SBC 202 floppy
disks and one MBB-~80 "disk."™ If uwmcre or 1less disks are
requiread, this disk parageter table must be changed and a

naw BIOS generatad as described in a following section.

93

I i e e S

e T R

The disk definition rarameters used in the BIOS of
Raference 18 for <he iSBC 202 contrcller were wused in this
implementation. The disk definition parameters used in this
isplementation for the MBB-80 were derived from the magnetic
butble storage organization scheme. First and last sector
nuekers vere defined as 1 and 26, respectively. No skew
translation vas specified in that the BICS MBB-80
sector/track translation rcutines provide for this function.
A Llocksize of 1024 wvwas defined so as to resemble a
single-density disk. The <capacity is 71K byres as
detersined by the physical storage scheme and acccunting for
reserved operating system tracks. Space was reserved for 32
directory =antries, which allocates the wminimum space
possible for the ¥BB-80 directory. A checked entry cf zero
(0) is absolutely necessary to indicate that the MEB-80 is a
ncn-removable media, Any directory checking will result in
read-only status settings for t¢the MBE-80 since CRC check~-sunm
bvtes are nct provided for by the M#BB3-80 <ccantroller.
Fipally, =-wo "<racks" are raserved for the operating systea.
This will 223 in *he implzmentation of an MEB-80 LOADER on

track 0 and track 1.

34

3. Disk confiquratjon Tables

The DKPRM.DEBF £file contains informatiom about the
physical characteristics of each logical device. Since aore
than one possible device type may be generated in this
irplementation, it is necessary to a@map the CP/M-86 logical
device nuabers and their associated physical characteristics
*c the ac*tual physical devices they represent. A set of
+*aktles has been developed to accomplish this task arpd is
contained in the file called CONFIG.DEP. This file is also
an 8086 assembly language scurce code f£ile which is included
into the BIOS during assextly. The configuraticn file is
entirsly a product of this implementation ard has no
relation =0 Digital Research's C2/M-86 distribution BIOS
ccde. A summary descripticn of the CONFIG.DEFP file entries
is contained in the CONPIG.DEF file itself. A complete
discussion of the *ables will be prasented here.

The f£first en*ry in the configuration file is the number
of logical disks defined. The identifier came in the file
iz "num_log_disk" and this entry is an egquat2 statement.
The value of this label can be in the range 0-16 decimal but

must correspond %o *he "DISKS™ statement in <“he DKPEM.DEF

£ile.

AD~AL15 028 NAVAL POSTORADUATE SCHOOL MONTEREY CA F/6 9/2
APTATION OF MAGNETIC BUBBLE KMY IN A STANDARD MICROCOMPUTE=~ETC (U}
DEC 81 M § HICKLINs J A NEUFELD

UNCLASSIFIED NL

s ¥

ml 1.0 &z pz

— 32

=ik
3

-

rrr

I
@ rr

Jlizs s pes

1 4

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

A

TN A e
. Ve
- «‘.&*ﬂ-;“— stk am mm

. ——

The next entry is the device table. The identifier name
in the fil2 is "device_table" and this table is a 0-16 byte,
one-byte per entry, table. This table describes the type of
each disk device in logical order from CP/#-86 disk nuaber
zerc (0) to the highest CP/M-86 disk number generated (which
is "num_log_disks" minus 1). A byte position, or
disgplacement, in the takle correspoands to the 1logical
CE/M-86 disk pumber (viz., byte offset 2 is the device type
entry for Cp/M-86 disk number 2, if generated). Bach
logical CcP/M-86 disk that is defined aust have an entry in
this table indicating i+s device tyge. Therefore, the size
of this table, in bytes, will egqual the nuaber of CP/N-86
disks defined. The different device types supported in this
isplementation each have a unique, hexadeciaal, byte valus
to identify <then. These codes are defined in equate
statements a*t the beginning of the BIOS. The user will make
entries into this table using the equate constants
"disk_type" and "anbb80_type"™, with each successive entry
segparated by a comma.

Pcllowing the device table is the disk logical table for
the iSBC 202 4disk ccatrcller. The identifier name in the
file is "DK_logical_tabla" and this table is a 0-16 byte,

one-byte per entry, table. This table aaps logical CP/M-86

96

;:.

meagr—

rsssowspunes

!
{
i

disk numbers (0-15 possible) to internal isSBC 202 4disk
centrcller numbers. A single iSBC 202 <contrcller can
address up toc four disks (internally numbered 0-3). A
specific BIOS configuration may assign the four isSBC 202
disks to any four CP/4-86 disk nupbers in the range 0-15.
These CP/M-86 disk numbers must be mapped 2o iSBC 202 disk
ccntreller numbers (0-3) <to ke used in the disk channel
comaand words. Therefore, this table maps logical Cp/M-86
disk numbers to iSBC 202 disks (up tc to a maximuas of four,
since this iwmplementation is designed for a sipgle isSBC 202
ccntreocller). The size of this table, in bytes, can be up to
16 bytes, with the offset in +the takle corresponding to an
entry for that CP/M-86 logical disk nuamber. It is important
tc note *+hat an entry must exist for all positions in the
+akle up to and including the offset for the last CP/M-86
disk generated as an iSEC 202 disk device. The value
"CK_null®, which is merely a "place holder”, is used for ail
entries which do not correspond to iSEC 202 disk devices.
Por exanmple, if +wo iSBC 202 disks were generated as
logical CcP/4-86 disk numbers 0 and 4, then the table would
be five bytes long. Byte offsets 0 and 4 would contain 00H
and 01H (as internal disk numbers) respectively, wvhile byte

offsets 1-3 would contain the "DK_null" place holding entry.

97

‘numnker of CP/M-86 Adisks defined. The tatle is "walked ;

Byte offsets greater thapn 4, the last iSBC 202 disk

gererated in this example CP/M-86, need not be defined

(ccded) .

The las*t entry in the file is the MBB-80 logical table 1
fcr the MBB-80 controller (s). The identifier name in the
file is "MB_logical_table" and this table s a 0-18 word,
one-wcrd per entry, table. This table maps logical CP/N-86
disk numbers (0-15 possible) to MBB-80 controller geqment
tase addresses. Any number of MBB-80 *"disks" 2ay be
generated anywvhere (non-sequentially and non-contiguously)
in the logical CP/M-86 disk range of 0-15. The siza of this
tatle, in words, wmust be ¢xgctly equal to the nuaber of

disks defined ("num_log_disks"), The vord offset in the

taktle corresponds to an entry (ccntroller segaent base
address) for that CP/M-86 MBB-80 "disk." It is iaportamnt to
note <that an entry must exist £for all positions in the

takla. The value "¥B_null", which is aerely a "place

heclder"”, is used for all ertries which do pot correspond to
an MBB-80 "disk" dsvice. This table is also used to

initialize <the MBB=-80 <controller(s) based on the total }

through®, with null entries being ignored and with non-null

contrcller segment Dbase addresses baing initialized.

98

Therefore, unlike the disk logical table, there sust be one
entry for every logical CP/4-86 disk defiaed.

For example, if five CEF/M-86 disks were generated, with
nugbers 0, 1 and 3 being iSBC 202 disks and nuambers 2 and 4
being MBB-80 "disks", this table wculd be five words in
lergth. Word offsets 2 and 4 would contain wvalid M4BB-80

centrcller segment kase addresses (in hex), while word

offsets 0, 1 and 3 vould ccntain the "MB_null" place holding

entry. It is also important tc note that when boct loading

a CE/M-86 operating system with MBB-80 boards generated as
disks, it is imperative that all MBB-80 boards Le plugged
into the INTELLEC MDS chassis and powered up. Pailure to do
so will cause the BIOS initialization routine to "harg" when
prccessing the wvalid controller segment base addresses for
MBE-80's in this table.

4. BIQOS Geperatiom Proceduge

The procedure for the generation of a

user-configured BIOS and a new CP/M-~86 operating systea is
described on pages 80-82 c¢cf Reference 21. A synopsis of
;?% that procedure, along with the necessary modifications for
+his implementation, will be presented here.

The two files, DKPRM.DEF and CONFIG.DEF, are updated, as

specified above, <+«o reflect the user's desired devices and

99

configurations. The CP/M-86 GENDEF utility prograa is run
utilizing DKPRM.DEF as input and producing DKPRN.LIB as
output.

Assuming all necessary device-dependent modifications
are sade to the BIOS, assesbly of the BIOS can take place.
No modifications are necessary to this implementation BIOS
if only isBC 202 disks and MNBE-80 "disks", in soae
coasbination, are to te used. This implementationt's BIOS is
included in the file called MBBIOS.A86 and is listed in
Appendix BE. In the code file M3BIOS.A86, <there are the
approrriate ASN86 "include statements" for the files
DKPRM.LIB and CONPIG.DEF which will cause them to be
inserted into MBBIOS.A86 during assesbly. It was found that
the 8086 cross assembler, a CP/M-80 prograa, has a small
syastol table capacity. Therefore, assembly of MBBIOS.A86
must take place under CP/M-86.

Opon successful assenmbly, fhe file MBBIOS.HB86 1is
prcduced. This file 4is concatenated tc the CPp/M-86
distribution CCP and BDOS, «contained in the <£file CPM.HS86,
using the CP/M-86 utility program called PIP.CMD. The name¢
of the resulting coamtined file should be a duamy, teaporary
nase such as NEWCPN.HS86. The resulting <CCP, BDOS and

customized BIOCS hex file is then ccnverted to ¢the CMD file

100

o Wt < AR e b aatmins, i s P e

B
o

fcrmat by executing the CP/M-86 utility program called
GENCML.CMD. The GENCMD ortions of an 8080 memory model and
an absolute code location of "A4O0"™ aust be specified. The
fcrmat of the command with the optioas follows:
GENCMD NEWCPM 8080 ccde(Aa40]
Pinally, *the NEWCPM.CMD file is transferred to a new systea
disk that contains a LCADER program (ses Chapter VII) and
renaaed to CPM.SYS. Now the +tailcring process is complete
and a boot 1load to the nevw systea disk will invoke the
CP/M-86 that has been generated.
5. ec t

This implementation has been designed to directly
Ssupport a single isS2C 202 disk ccntroller and amultiple
MBE-80 boards in the BIOS. This allows for up to four (4)
flcrpy disks and up to "a" (where "n" equals sixteen ainus
the number of iSBC 202 disks genaratcd) MBB-80 disks.

The number and types of iSBC 202 and MBB-80 disks can be
alteresd via the device and configuration tables. No changes
are necessary o this isplementation's BIOS code
(MEEI0S.A86) . Folleowing the rrocedures of Secticn D.4 of
thie chaptar will generate a new configuration in accordance
with the information contained in the tables. Therefore,

+his BIOS can be <easily expanded to suppoert additional

101

POCITI ERRICTL PN »,Mg-u...‘;

e conbklifarin %, . ey T

MBR-80 "disks"™ and two more iSBC 202 drives (since the iSBC
202 ccntroller is currently controlling only two physical
drives).

This implementation has been generated with <three (3)
logical Cp/M-86 disks. CP/M-86 disk numbers 0 (drive A:)
and 2 (drive C:) map to the iSBC 202 controller's ianternal
disk numbers 0 and 1. CP/M-86 disk number 1 (drive B:) aaps
to an MBB-80 Bubbl-Board controller at a segment base
address of 080004. A segment base address of (8Q00H was
chcsen for twc reasons: (1) CE/N-86 I/0 reserved addresses
in the first 64K segaent cculd not be used because of the
inability to inhibit the onboard RAM for memory-amapped I/O,
and (2) 080000H is significantly out of the address range
for most applications. This address c¢an be changed by
mcdifying the entry in the CONPIG.DEF file for <the MBB-80
centrcller segment base address.

E. EVALUATION OFP THE IMPLEMENTATION
1. Rerformapnce
The primary criteria fcr the performance evaluation
of this iaplemen-ation was the speed of executicn of the
inputsoutput functicns of the types of disk devices. Three
different programs were run on ktoth an MBB-80 "disk" and on

an isBC 202 disk +to0 deteraine execution times. A

102

- e TR § o R A

conventional stopwatch was used <for <the timing and the
results of those tests are sumaarized below.

The first test consisted of executing the CP/M-86
utility program, called EIP.CMD, which traasfers CP/N-86
files between disks. The PIP prograa and target files of
2K, 6K and 28K bytes were loaded to both an MBE-80 "disk"
and an isSBC 202 disk. Transfer operations were performed on
each file on each device utilizing same-device resident
cories of PIP, the target €file and the destination file.

The results o¢f the test utilizing the PIP program wvere as

follous:
File size (Bytes) MBB-80 (Seconds) 4iSBC 202 (Secopds)
3.5 11.2
6K 6.1 11.3
28K 18. 21.2

The second test consisted of executing the CP/N-86
utility program, called ED.CMD, which is an object-oriented
editor for files. The ED program and target files of 2K, 6K
and 24K bytes were loaded to toth an ¥BB-80 "disk" and an
isBC 202 4isk. 8dit operations vere performed on each file
on each device using same-device resident copies of ED, the
target file and the destination file. The events timed and
+tested for an edit cperation were the reading of the ED

pccgraz into memory and the writing of the target file back

103

oL _' RN B
M ™ s
PECERPUIPS P

to its source disk from FAM memory. The results of the

editing %est were as follous:

Bile Size (Bytes) =80 c 1SBC econd
Bead igite Read izite

2K 2.6 1.5 8.4 5.3
6K 3.3 3.1 8.5 6.4
24K 3.4 10.4 8.7 13.9

The last test consisted of executing the CP/M-86 utility
prcgram, called AsSM86.CMC, which assemables 8086 asseably
language files into 8086 hex files. The ASM86 program and
target files of 4K, 8K and 14K bytes were loaded to both an
MBE-80 "disk™ and an isBC 202 disk. Assenply cperations
were performed on each file c¢cn each device wutilizing
sare-device resident copies of ASM86, the target file and
all of the ASM86 output files. The results of the asseably

+est were as follows:

ize tes) MBB-80 (Seconds) 4iSBC 202 (Seconds)
4K 20.9 28. 4

8K 45.0 53.7
14K 64,3 81.9

Prom these test results it can be computed that an

MBE-80 "disk" will prcvide an average increase of
apfrroximately 42 percent in irput/output over am iSBC 202
disk. Of course, the more I/0O intensive a program is, <the
greater the performance advantage that can be realized when

usirg an 4BB-80 vice an iSBC 202 disk.

104

it/

YR e .
. ?l. '
—— e

b ety

DR
-V

2. Liaitations

Three primary 1limitations wvere discovered in this
isglementation: transportability, deasity and transfer
rate, A certain measure cf transportability is provided in
that any single MBB-80 Bubbl-Board is a2 1logically complete
CP/N-86 disk. The board ca:z be removed from the INTELLEC DD
MDS system chassis and moved tc another systes that supports
MBE-~80 devices under CP/X-86. However, this dces require
the "powering down® cf ¢the chassis prior to removing the
board. It is also recognized that the nmnedia of a
solid-state circuit board is different frca that of a
flexible, thin, magnetic disk. It is not clear which media
is amore conducive *o transportability in any given
application and environment.

The second 1limitation involves the relatively small
capacity of the MBB-80 "disk" (78K bytes) in comparison to a
single-density or double~density floppy disk (250K or 500K
bytes). Even if the full capacity of the MBB-80 (92K bytes)
could be used, the capacity difference is significant. The
lisited capacity of the MBE-80 restricts the number and size
of the applications which can bLe excecuted eptirely with the
MBE-80 storage device. This linitation made large
assepblies on M¥BB-80's and MBE-80 C(CP/M-86 resident disks

impractical for a useful iazplementaticna.
105

'
REEY T A

R T

A sk o B st
e maadems PR .

The third limitation, transfer rate, becomes evident in
viewing the test <results presented in the fperformance
section. As the size of the file is increased, the MBB-80's
advantage over the iSBC 202 on I,/0 operations becomes less
noticeable. This is priwmarily due to the fact that the
MBE-80's transfer rate is only 45 Kbits/second, compared <o
a transfar rate of 250 Kbits/second for the iSBC 202. When
I/C is performed where <the anumber of seeks 1is relatively
small in comparison to the number of actual bits
transferred, the MBB-80's advantage is diminished. The
validity of this +rend could not be verified by the testing
of 1large files because of the capacity limitation «cited
abcve,

I+ should be noted <:hat, upen the availakility of
multiple ¥MBB-80 boards, a system can be easily generated to
support many MBB-80 "disks." Then, large applications could
be run exclusively cn MBE-80 "disks" by utilizing target
disk specification parameters that are available in nmost
CP/M-86 u*+ility programs. hAdditiomnally, thke future
generation of a BICS wutilizirg the currently available,
high-capacity (1M byte) magnetic bubble devices is not to be
precluded. This implementation of a BIOS provides an
excellent and easily adapted framework for the addition of

naw types of disk davices.
106

e o .)

3. applications

This implementation of an MBE-80 3Subbl-Board within
the Cp/M-86 operating system has prcduced a workable host
mnicrccomputer envircnment which can Lte used for research and
evaluation of nmagnetic bukble 1emory technology. It has
alsc produced, wi+th the subsequent addition of amcre MBB-80
boards, a developmental systeam which offers significant
performance (speed of I/O) improvements over standard floppy
disks in certain applicaticmos.

There is much theoretical research oz the applicability
of magnetic devices. The literature contains marny untasted
and unimplemented designs, algorithms and programs for
avclications ranging from "fast sorts" to database
management schenmes, This isplementation pro&ides a host
system capable of supporting tesearch and experimentation in
these areas on a fully-cperaticnal microcomputer system that
SUpgcrts magnetic bubble devices.

This iaplementation has rproduced a system capable of
supppr:ing up to sixteen MBB-80 "“disks." Despite <the
indiviiual capacity 1liamit of 78K bytes per MBB-80, it is
obvious that a significant reducticm in program development
tige could be achieved wutilizing exclusively MBB-80 logical

"disks,." This system is built wupon the highly-regarded

107

P A e

Intel 8086, 16-bit microprocessor running under the CP/M-86
overating systen. These characteristics, coabined with the
demcnstratad performance <¢f£ the MBB-80, contribute to
prcvide a robust host system <for research and application

) prcgram development utilizing magnetic bubble devices.

s T

108

VII. BOOTLQADING Cps/M-86 FRCM THE MEBDP-80
A. BOOT RONM AND LOADER COMNSIDERATIOCNS

When installed in the iSBC 86,/12A, the BCOT ROM is part
of the memory address space, beginning at byte location
OFEQOOOH, and receives control when the system resat Ltutton
is depressed. The BOOT B80M on <the standard iSBC 36/12A
cortains the 957 monitor program as supplied by Intel. The
prcgram implemented on the EERCM chips was wmodified by
adding code tc the end of <the 957 zcnitor pregraa in meaory
addresses that were not utilized in the implementation of
Reference 18. This customized addition of code to the 957
mcnitcr program begins at memory address OFFD40OH and has <he
responsibility of reading the LOADER prograam from the first
twe system <+racks of the Cp/M~86 default disk drive in<o
memory and then passing ccntrol <tc the LOADER [Fprogram for
execution.

The BOOT ROM is actuwally an EPROM which can be modifiad
fcr srecific irplementations. The host davelopment systea,
as described in Reference 18, reads the LOADER prograa froa
tracks 0 and 1 on physical drive number 0 of the iSBC 202
ccntrceller. The addi+ional BOCT BHOM code contains the

nacessary rcutines for initializing <the iSBC 202 controller

109

ks ke Bt

and fcr reading the LOADER progzram from disk into aemory.
This procedure is initiated by issuing a "GFFDU:0" ccamand
to the 957 amonitor, which passes control to the beginning of
the bcotstrap code in the BCOT ROM.

It was considered desirable to be able to boct load the
CP/N8-86 operating system from either an iSBC 202 disk or
frce an ¥BB-80 logical “disk." This requires two entry
points irnto the additional <c¢ode in the BOOT RCHN. These
entry points will set a flag indicating whether am iSBC 202
disk or the MBB-80 is to be used as the boot loading device.
Additionally, routines for initializing <¢the MBB-80 and for
reading track 0 and track 1 on the MBB-80 had to te included
in the BOOT RONM.

The available space in the BOOT ROM address space is
severely limited. Therefcre, the ccde for common functions
in <the BOOT RON amaust be used by both an iSBC 202 boot
request and an MBB-80 boot request when boot loading. Then,
based on <he value of the entry point flag, the requestad
davice =ypa (viz., iSBC 202 or 4BE-80) initializaticn and
read routines will be utilized to read into RAM the LOADER
prcqgraa froa tracks 0 and 1 of the boot device, A coamon
secticn of code will be used %0 pass control ¢o the LOADER

prcgram for execution. A primary consideration 3ygt be

110

restricting the size of this additicnal code to the unused
space after <the 957 &moniter program in the iSBC 86/12A's
onkcard EPRON,

The LOADER prograns is a simple subset ¢f the CP/M-86
operating system <+hat contains sufficient file processing
capability to read CPM.SYS intc memory from a systea disk.
When the LOADER prograam completes its operation, the CPM.SYS
precgram r2ceives control and proceeds to process operator
irgut commands. The LOADER prcgram consists of a locader CPHM
and a loader BDOS (distrikuted by Digital Research) along
with a user-configured loader BIOS. The file resulting from
the concatenaticn of these three modules is converted to an
execu+abla CMD file and gplaced on tracks 0 and 1 of the
svstem disk. [Ref. 21: pp. 77-79]

A user-configured lcader BIOS can be generated from the
BICS code developed in this igplementation. The complete
flexibility of device configuration that is possible in a
standard BIOS is also possible in a 1loader BIOS. This
imgliss an importan%t consideration: the LOADER prograa does
not hava to read CPM.SYS from <the same device that the
LCADER program itself was read fronm. The LOACER prograa
will read CPM.SYS from the default disk aumber and its

corresponding device tyre based upon the device

confiqurations and owsappings specified in the 1lcader BIOS.
Issuing a m@monitor “GO" coamand for the entry point of the
iSEC 202 ia the BOOT ROM ill always result in the contents
of tracks 0 and 1 (the LCADER progras) on physical iSBC 202
drive number 0 being read into RAA. Likevise, issuing a
moni*or "wGo" command for the entry point of the MBB-80 in
+he BOOT ROM will always result in the contents of “tracks"
0 and 1 of the MBB-80 at a cocntroller segment base address
of 086005 being read into RAM. The actual device
confiquration contained in the loader BIOS is not restricted
by the type of device used by the EQOT ROM when reading the
LCACER progranm.
B. BOOT BROM AND LOADER IMPLEMENTATICON
The additional code for the BOCT ROM was written and
tested. I+ provided for a ccnditional boot load froa an
iSEC 202 or from an M¥BB-80 at a cecntroller segment base
address of 08000H. The entry points are OFFD4OH f£fcr the
isBEC 202 and OPFD44H for the MEB-80. Upon depressing the
reset button, *he 957 monitcr prograa begins execution. To
boct load from %the iSBC 202 +he acnitcr command "GFFD4:0%" is
iven, which is +he same ccamand as that used in the
ivplementation of Reference 18. Toc boot 1load from the

MBE-80, tha mcnitor ccmmand “GFFD4:0004%" is given.

112

-

Ce b A e) o

A A A

| T
v A ‘,'l".:
s aonadms o

The additional code for the BOCT ROM contains the eatry
pcints for the ¢two device tyres, the isBC 86/12A
initialization procedures and the code necessary to
initialize <*he selected tcot device and rzad the LOADER
prcgram from <the system tracks of that device. The
additional code for “he BCCT ROM is contained in the file
called MBBOROM.AS6. This f£file is asseabled and the
resulting object code is added to the 957 monitor program on
the 1iSBC 86/12A's onboard EPROM. This prccedure is
described in Section C of this chapter.

The LOADER program itself ccnsists of three parts: the
Lcad CPM program (1DCPM.H86), the Loader Basic Disk
Operating System (LDBDOS.HB86) and the Loader Basic I/0
System (LDBIOS.HB86). The files LDCPM.HB86 and LDBDCS.HE86 are
included as part of the standard Digital Research
distribution system for CP/M-86. The 1lcader BIOS is
generated Srom the file MEBIOS.A86, vwhich is also used to
generate the standard CP/M-86 PEIOS for this implementation.
MPEICS.A86 contains a conditioral assembly switch, called
"lcader_bios", which, when enabled, produces a lcader BIOS.
The effect of “his switch is tc modify certain addresses QZ
correspond <%c¢ entry pcints into LDCPM and LDBECCS and <to
eliminate BIOS code that is not needed in the loader version

of a BIOS.
113

i3 MR RO s I R R N e

The loader BIOS is configured in exactly the same manner
as +he 3I0S itself and is fully described in Section D.4 of
Chagter VI. The <wo files CONFIG.DEF and DKPRM.LCEP must be
modified to meet the user's requirements and to reflect tha
device that will contain CPM.SYS. It is the default drive,
or CP/M-86 drive number 0, that is specified in the device
takle that determines which device will be searched for a
CENM.SYS file.

The loader BIOS generation procedure is different froa
+he BIOS generation procedure. Upon modification of the DEF
files and successful asseakly of MEBIOS.A86, a file called
MPEIOS.H86 is produced. This file is concatenated to
LDCEM.H86 and LDBDOS.H86 using the CP/M-86 utility progras
called PIP.CMD. The resulting combined file should be named
LDRIOS.H86. The resulting Jcader CCP, BDOS and BIOS hex
file is then ccnverted to the CMD file <£format by executing
“he CP/8-86 utility progras «called GENCMD.CHMD. The GENCHND
1 cpticns of an 8080 wmemcry model and an absolute code
aZQ lccation of "A400" wmust be specified. The format of this

: copmand is as follows:
GENCMD LDBIOS 8080 CODE[A400]
Finally, <¢he new loader BIOS aust be copied tc tracks 0 and

1 ¢f£ +*he new systes disk. This is done by executing the

114

B I T T i i

CP/N-86 utility program called LDCOPY.CMD. Assuaing the
lcader BIOS executatle file was called LDBIOS.CMD, the
fcllowing comand would be used to initiate this prccess:

LDCOPY LDBIOS
The LDCOPY program will ask for a destipation drive to
receive the 1LDBIOS program on its track 0 and track 1. The
target drive should have a scratch floppy disk (if an isasC
202) or an MBB-80 board. A ccmplete descriptica of the
LDCCPY procedure is given on pages 77-79 of Reference 21.
C. EFROH GENERATION

With the koot lc¢ad program, MES80ROM, written, the only
remaining task was the generaticn, ¢r programming, of the
reguired 3pacu chips. The isBC 86/12A has 8K bytes of
onkcard addressable PPRONM, prcvided ip four Iantel 2716 EPROM
chips of 2K bytes each. Because of the odd-even addressing
of the iSBC 86/12A, two of the 2716s are devoted to the UK
even addraess tytes and the other twc are devoted to the UK
odd address bytes. These even and ¢dd address EPROMs are
loca+ed a%t starting addresses QFEOQOH and OFEQO01H,
respectively.

As previously amentioned, the 957 monitor program of %he
INTELLEC DD MDS system occupies a large porticn of <%his

ontcard EPROM address space. The monitor occupies the

118

address space between OFE00OH and OFPD22H and also has jump
vectcrs located between OFFFEOH and OFFFPPFPH. The address
space available £for toot loader programs is approximately
720 (decimal) bytes betveen the end of the monitcr and the
jumg vectors. Since this availatle space is 1located
entirely in the upper 4K tytes of the onboard EEROM, only
the two 2716 EPROM chips containing the upper 4K bytes of
address space need to be modified when incorporating a boot
lcader.

Otilizing the CP/H8-86 utility program called DDT.CMD,
the contents of the upper 4K bytes of the iSBC 86/12A's
ontcard EPROM was z¢éaii into memory and then saved as an
executable CMD file. The INTELLEC DD MDS systea was then
reconfigured to the standard Intel 8080 sytea to facilitate
the use of the ISIS cperating systea and the Universal Proa
Prcgrammer. The CP/M-80 utility program called DLT.COM was
then utilized to replace the the existing bcot loader
perticn of the saved copy cf the EFROM contents with a copy
of MBSBOROM.CNMD. This resulted in a single, complete,
contiguous copy of the desired EPROM coantents.

Intel 8080 asseally larguage prcgrams were then written
to split a file intc contiguous blocks of odd address and

evep address bytes. Using the CP/M-80 DDT program, the file

116

SO Yop=T SN RIS RPN TN

ccntaining the new BEROM contents vwas loaded into memory and
then each o0f the splitting prcgrams loaded and executed.
Thie resulted in the desired EPROM contents being divided
intc two contiguous blocks of 2K Lytes each, c¢ne block
containing the even address bytes of the split file and the
other containing <the c¢dd address bytes of the file, and
stcred in RAN. The ISIS cperating system was then Looted
vith the two split tlocks cf <the new EPROM contents still
stcred in RAM. The ISIS Universal FPBROM Mapper (UPM) systea
vas then used to program two intel 2716 EPROM chips, one
with the 2K Lyte contiguous blicck of odd address bytes and
the second with the 2K bytes of even address bytes
previously stored in RaM. The contents of the <two newly
pregrammed 2716 chips was then verified using the facilities
of the UPM systeam.

The new EPROM chips, ncw containing MBB8ORCM.CMD in place
of the boot 1loader provided Ly Reference 18, +vwere then
placed on the iSBC 86/12A and operationally tested. Boot
lcading £from both an isSBC 202 disk and an 4BB-80 "disk" was
successfully accomplished. To ensure compatibility with the
previous iamplementation <¢f Reference 18, the CP/M-86
operating system of that ioplementation was successfully

bcect loaded with the new EEKOM chips.

117

- —————c-

ANPRT e)Rl R

T T e 1 g e+

!
]
{
|
H

B e i e o

vy

i sy
.

R

VIII. CONCLUSIONS
A. THPLEMENTATION SYNOPSIS

All of the stated goals of this thesis were successfully
accceplished in this iszplementaticn. A magnetic bubble
device (MBB-80) was implemented utilizing a conventional
micrccomputer operating system (CP/8¥-86) and a commercial
16-tit microprocessor (Intel 8086). A fully cperational
system capable of testing, evaluating apd utilizing a
magnetic bubble device in a standard user envirobament was
presented.

This implementation wvas accomplished in a @manner such
that future modifications and additicns of hardware will be
relatively easy. The bhardware-dependent Basic I/0 Systea
(BIOS) of the CP/M-86 operating systea vas developed and
coded as a structured, modularized, table~driven module.
Device-depandent routines were isclated and confined to
specific subroutines and tables. Device-independent code
vas structured to operate, without wmcdification, wutilizing
the t*tables and subroutines which describe <the specific
hardware of the systen. Documentation and structured
programming techniques were emphasized to provide <ease of

prcgraa maintenance and modification.

118

I N DT UL eaiiie

i

This iosplemepntation [provided a system in which the i
MBE-80 magne*ic qhbble device bhas the functicnal appearance
of a disk o thefcp/u-86 operating systea. Consegquently, at §

the user-interqace level, nc special considerations are é

necessary to; utilize <the magnetic bukble devices.
. Additionally, /a system vwas generated consisting entirely of

magnetic bubbJe devices. The system BOOT ROM and LOADER

prcgranm were{uodified to shew the feasibility of Lkooting the
Ce/8-86 opiratinq system frcm a magnetic bubble Jdevice.
This produdgd a fully operational system supported only by
magnetic ﬁubble secondary storage (viz., po floppy disks).
This ;inplelentation and the vpreven feasibility of a
system using magnetic bubkle devices suggest 3any possible
applicatiéns for this type of systea. An operational systea
is now available for further testing and evaluation of
magnetic bubble deavices. The MBB-80, as a logical disk
device }%enezated intec a Cp/M-86 environment, Lecomes a

conpatzfle medium fcr different host systems (viz., hard

i
v

]
1
]
i .
rfi disk, double-density, single~density). MBB-80 boards can be
; moved/ to any CP/M-86 MULTIBUS systen, vhich has been

geneyated with MBB-80 devices, and used to transfer files to

thi/host systea anedia.

/ 113

P IR SRR 0 3

Che " G d s e L Ly p N
- vt A b2 <, v MR N 8 W s

B. BRECOMMENDATIONS POR FUTURE ROBRK

There are four major areas that present opprortunities
for future wvork. These areas are: (1) torage mapping
schemes; (2) MBB-80 perforsance measurements; (3) generating
and +testing of new magnetic bubble devices; and, (4)
isplementation of new and existing applications utilizing
MBE-80 devices.

The storage mapping schene for the MEB-80, as
implesented in this thesis, is both siaple and efficient
(viz., speed of code execution) but wastes 15.2 percemt of
the <=ctal capacity of the MEB-80 Bubbl-Board. Many storage
schemes are possible if the MBE-80 is to be configured as a
non-standard disk (viz., ncn-standard in relation to CP/M-86
track, sactor and blocking schemes) . It is not clear what
physical confiquration of the MBEB~-80, as logically presented
to the CP/M-86 operating system, will provide the best
tradeoff between speed and usable capacity for the MBB-80.

The performance evalua+ion c¢f <the MBB-80, as generated
into CP/M-86 in this implezentaticn, was limited to simple,
+ised tests of CP/M-86 utility operations. No attempts were
made *o perform an analytical evaluation of the low-level
MBE-80 bubble operations in comparison to the corresponding

low-lavel iSBC 202 disk orerations. The MBB-80Q low-level

120

oy -

diagncstic programs of Chapter V would provide an excellent

vehicle for collecting data on the performance of low-level
MBE-80 operations. Additionally, no evaluation was made of
the cperational and/or environmental ruggedness of the
MEE-80. Much vork is pcssible in determining the
suitabili<ty of magnztic Lubble devices for use in harsh
envircrnments. The fully cperaticnal magnetic bubble systenm
will allow for testing and data collection under actual
orerating conditions.

The modularized, cable~driven BIOS developed in +his
irplementation is easily adapted to new hardware. Magnetic
buttle devices based on new, high-density technology with
parallel block/replicate architecture can be generated into
the BIOS by simply addirng appropriate device-dependent
read/write routines and appropriate table entries. The
framework provided ¢ty <this isplementation of a BIGS will
lznd itself tc¢ the addition of device types with a minimua
amcunt of re-coding. The implementation of currently
available 256K byte and 1M Lyte magretic bubble devices into
+he CP/M-86 BIOS would provide a significant imprcvement in
+he usefulness of this implementation as a host development

systen.

121

Finally, this implementation of a BICS can support

multiple (up to 16) MBB-80 boards. With aultigle boards
(disks), this implementation system would be suitable for
existing applications +hat utilize floppy disks. A total
magnetic bubkle systea (without £flcppy disks) has been
irplemented with a single MBB-80 board. This allows the
implementation of many arplications on a total MBE-80 systeas
where the availability or desirability of floppy disks is in
doukt.
C. POTEHTIAL APPLICATIONS

Chapter II and Chapter 1III presented evidence showing
the current and future potential of magnetic Lubble devices.
The capacities, access rates and transfer rates cf magnetic
butble devices are tecoming ccmpetitive with, and often
surpass, most conventicnal secondary storage media.
Additionally, +the <characteristics of non-vclatility, 1low
pOwer consumption, environmental ruggedness, aign
r2liability and lowvw maintenance exhikited by magnetic bubbla
;ii devices give <this technclogy a decided advantage over
ccpventional secondary stcrage media in certain
applications. Specifically, the applicaticn c¢f magnetic
butble technology to the military environment apfgears very

desirable.

122

Magnetic tubble devices reguire 9ply DC power sources in

the range of 1.0 amperes to 3.0 amperes at 5 velt and 12
volt levels., Power consumption is approximately 32 watts
per megabyte cf data capacity. Ploppy disk devices require
bcth AC 3pd DC power sources. AC line frequency aust be
within one-half (1/2) hertz of the required f£frequency
because of its effect cn disk rotaticnal speed apd, thus,
the read/vwrite tolerances. DC pover sources are in the
range of 5.0 amperes to 8.0 amperes at S volt and 12 volt
levels. Power consuapticn is approximately 350-400 watts
per megabyte of data capacity. Magnetic bubkle devices can
operate in *temperature ranges of 0 tc 70 degrees Celsius and
mairtain data storage integrity in the range of =65 to 150

degrees Calsius. Magnetic devices can operate reliakly in

up ¢tc 100% relative humidity. Plcppy disk devices can

operate in temperature ranges .£€ 10 to 40 degrees Celsius
and at relative humidity 1levels Letween 20% and 80€%.
Operation of floppy disk devices outside these ranges can

result in distortion of the diskette, followed by oxide

deterioration, hygroescopic expansions, off-track recording

d and finally, irreversable magnetic affects. Magnetic bubble
devices can withstand shock up to a 200G force and vibration

ap %0 a 20G force. No coomparatle figures for flcppy and/or

123

hard disks are availabla since excessive shock and vibration
are not considered as part of their potential
“epvironmen«s." dean tise between failure <for magmnetic
devices is typically 5-10 years as compared to 5000-8000
hcurs (approximately 1 year) for £floppy disk devices. It
shculd be noted that disk devicses, in general, require

periodic maintenance and magnetic butbtkle devices dc not.

Because of the stated advantages of magnetic bubble
meacry over cther existing secondary storage technolcgies,
it can be used 3in applications requiring mass storage of
real time data that can be <+transferred to the systea's main
memory for prccessing. Most military applications have only
the requirement for loading of prcgraas and relatively samall
amcunts of data to main memory. In these cases, the large
capacity and transfer rate advantage cf hard disks (relative
to magnetic bubble devices) would not be needed.
Conseguently, magnetic bukble devices are a prime candidate
for use in real +*ime ccmbat systems that must "gc to war"
such as the U.S. Navy's AEGIS weapons systenm.

Several specific nwilivary applications are gcurgreptly

using magnetic bubble devices. The Canadian Navy uses

tutble memory for data recording at sea. The U.S5. Air Force

ek a4

uses magnetic Dbubble cassettes to distribute and run P-15

124

aircraft naintenance diagnostic prograss. Most military
apgplications <requiring a ruggedized storage medium are
currently utilizing tape cassettes and flexible disk drives,
Buttle memory, in pcrtable cassette form, offers significant
advantages over tape and disk media. A 2M bit bubktle memory
package, capable of operating in a temperature range of -54
to +155 degrees C(Celsius, is being develcped £for the
Devartment of Defense Ly Western Electric and Bell
Lakcratoriss, It is targeted for use in a wide range of
military applications. [Ref. 23: pp. 89-90)

It is apparent that there exists a significant need for
magnetic bubble devices in military applications.
Currently, the industry is addressing the problems of making
magnetic bubble devices economically feasible, portable and
more reliable., Even if the cost per bit remains higher than
ccnventional media, the advantages of @magnetic bubble
devices in both military and coamercial environments will
present a convincing argument for the need and use of this

technclogy.

125

{
i
f
H

Cn e G

AEPENDIX)
PROGRAN LISTING OF DIAG80.ASH

FILENAMES: Pascal = MB.DIAG80.TEXT
CP/M = DIAG80.COM

22 o e e o 5 ok 2 3¢ eofe eske ok e ofe ol ok o e o0E ot e 3e 2 3K e e 0 2 2l a2 0o R 3K el 3K o IRk K R Kk

8080 DIAGNOSTIC TEST FOR PC/M MBB-80 BUBBLE MEMORIES =
RPARRRKEERXRRRKRARAXRRRREWERBERRARERBRRERR AR RIREE DI RR SR ER KK

CONFRGeR T I%Nie1 8080, 16 address lines, 4DS syste
- Inte ine =
§3ta bus oh 808p° 18 ggght Pifs. ° SYstem.

MBB - interrupts enabled, inferrupts inhibited in
gofgggge, single-page mode, 20 address lines
ec g.

mple bubble test for the 8080 - writeées or reads one
er specified page at a2 time - user also specifies test
ttern if writing. Status Seglster of MBB is displayed
the console whénever use or debugging.
e MBB~8Q controller base is defined by 'PS$contkase’.
B-80 address select pins aust ccrrespond to this
gresga Tg;s program uses memory mapped I/0 thrcugh the
se address.

HAMMRER R R RARAEXEEREREEXEERRERBRERE N BEEERR R R BRRE S BRR FER K kR

ffrex Neufeld and Michael Hicklin c5-03 Thesis *
P53 350 Bt P S SR S d DU R F SN 3PP
-

Bdes functicn nuamaters fcr calls »

PrOIgecee IRIRIR IR Ifecs ot [BIRee s pD QT WO 90900000 000000000090 000100000I0I0ICINICIGIAINIVIVINIBEVINI @0

des$conin aqu Q1R ;func # for Bdos read character
dcs$conount equ 028 ;func % for Bdos write character
dcefentry 2qu 00054 ;entry for call to Bdos

dcsPpstr equ 09H sfunc # fcr Bdos print string
dcs$reset aqu 00H ;func # for CP/M-B0 reset to CCP
* Miscellanecus eauates * .

lank equ 020H sAdscii blank

r eqgu 04H ;carriage retura

ol equ *'$! ;eénd c¢f "string char for gstr$fnc
£ egqu OaH +line feed

* MBB-80 characteris*ics (equates) .
Biraxpages aqua 641 4 of pages_on each bubble device
MB%ragesize equ 18 stubcle device page size

* MaE-80 comemand bxte pasks

BS;usZSchack aqu 00100000E ;is ¢ont kusy? check (20H)
Bfinitscad 2qu 000000018 ;ipntialize the controller (O01H)
Bfreadscad equ 10C00010F ;single~page read cad (82H
BSreset3cmd equ 010000008 ;reséet the controller (40H
Bfwrite$cmd equ 10C00100E ;sinpgle~page write cad (84H)

* MPBE~-B80 Ccntroller and Pcrts

$§ccntbase equ 04000H sbase of controller
Sgsello agqu PScontbhase 1 page select lsb

$gselhi aqu P$contbase+1 ;page select msb

126

rreaw

®tecssases Y g YIYNYD Y

* »

DIAG8O:

loop:

Write:

Read:

Cuit:

& %

(XTI PRYRYR YT ¥Y

Ask$User:

“swe

aqu

equ
adqu
equ

equ
squ
aqu
equ

rg 01

xi SP
di,

1xi D,
call Pr
call In
call In
ca%l As

Q

o

re

Hi
20 =rOQQUO =
DNV INEO
D emctctmt -

[

EX-2-X-

ontbase+9
cntbase+ 12
onthase+15

MAIN EFROGEAM

28Booon

asg$signon
in%$$tging
itsCont
itsDevs
k$User

ot

Bubble
Page

d

Call Get$Patterrn

call Wr

Re
call Pr

mp Loop
B Bt

cail Pr

lfl Loo

itefPrage

QESPage
int$oat

Bdossrese

call BdosSentry

Ehdmhhpprkkknkrkr ond of Main

ASKSUSER sub

scalled frcm: M
1 ®% asks user 1
+*% parm in - n
$** parm out -

1xi B,msgSaskfunc

call PfingSStrgng

call Read$Char

push PsSW

call Crlf

pop PSW

re

127

coagand register

read dgta :eglster
write data régister

; Status register

; loop size lstk-

; loop size mst.
;gage651ze feq%ster,

: bu ev selecCt register

LYY Y'Y T

o el otk o e e o e ale e 2ol e 3k o 20 300 23 A2 AR 020 o o s 2 3 ol o 2 ROl A e o 2 o R R A ko 3 o

CRIVER *
PRAARBERBREEREEEREBRREEERABEEXRE AR EPRERRFR KRG ARR SRS R RKRRR B K

sStack _pointer to app 4uK
;disablée ipterrupts

;addr of signon asg

sprint i

;init the MBB contrcller
+init the bubble deviges
;user want read or write?
;dces user wapt *o quit?

if sc, go quit

save user's answer

get user bubble # for test
get user page # fcr test
festore usef's answer

is this a read? .
if so, read ; else=vwrite
get user test pattern
write the page to MBB

sdo until wants to quit
:fead tack the page

¥rite out results .

do until wants to quit
;addr of done message
;Print it \

;func ¢ to quit \

;call Edos to terminate pgm

Progran **xxfxxkxR Rk EREk %

LIZTITYEYY YRYY)

B ol e sl o e A o ol e ok o ol SR e o o A ok 3 3R AR e ok ol e K e o o o Rk sk g

roytine

x
3 o e AR ok oo 3 30 e 3K 20 2R e 2 R S R ok S o ok e oo 3 3 e 3 o o 3 o A 3 ek e o o Rk s kol ok o K

ain. ,
f vants read,vwrite,cr quit

ans in reg A,R=read,Q=quit
all else=write.

iaddr of ask fcr func asg
;prlnt i

get the user's answver

Save user's answer,

skzg 8 line after ipput
restore user's ans for ret

TR . RO TIPS

(EIARRAERARRERBARERSAAEE AR D AR IR FXBR RS IERESRREBRRK S RRR B RRE & W
' CRLF sukroutine *
;*tt***t*t**#t##tt##tt#t*t:*ttt##t*t#t“t#ttt#ttttttltt&t*t
'called frcu: AskiUser,GetSBubble Get $Page,
Get §Pattern, Printd 6
Crlf: -** issues a carr ret, line feed to console
i#% parm ir - ncne.
s parm out - nonhe.

avi i cT ;Carr ret

call PrlntSChar .outpu% one char
av A 1f line fee

catl Print$Char .output one char
Te

*#******#tt##**i*i#**#*l?#t#*‘*#**#‘ﬁ'**l****"**.‘ gk Kk

TSBUBBLE subroutine =
tt#t**ttttttttttttt*#ttt#**##ttt#ttt*tt##ttt#tt&t:t

:called frce: Main

LIEYY IR YY)
"% %

GetSEubble: i*%* gets bukble t for test from ccosole
+** parm in - nQ
. i=x Barm out - 10ads fbubdev? variable.
1xi D,msg$qetbut .addr of LI°t" bubble asg
call Prin€gString g
:get bubble number - one yte (0 7
call Get$Hex ;geét hex digit
ani Ofh ;Clear high niktble
1xi D,bubdev ;addr bub ev byte
stax D sstor
ca%l Crlf ;Sklp a lzne after input
re
BRAARHARK R RRRARRREEERERR S ERARAERRRERRERRERRARRR R SRR RS R R

GET$HEX subrcutine *
2930200 02 o 20 K o e 3ok ool e o o0 K e e e o A 3 2 a3 e o A o e ek A 3 Ak ok Aok o
'called frca: Getssubble, Get $Page,
Get$Pattern.

LITYY YT
Il*

Get$Hex: ;** gets_a nuaber fres cons, converts both
: nibbles to the hex value,ie. 'F' keyed
: in = 46 Ascii, so FF :eturnea A
s¥* parm in - ncne,
%% parm out - double hex value in reg A.
call Read$Char get c r from
mvi H,08H igh byte of table addr
mov L,A ilow byte - index tc¢ table
ggg A, M itable lookup

RARBRRREEXXRIRARCRAARERREFRRSRAERRBRBRRERR KR RE SR BRRRRRRK S K

» GETSPAGE subroutine *

e 20 Aol o 000 o o o o Ao o 2 e ot A o ok o a0 o 2 o Aol o o O o sl ok sk o o o ol ok e e oo o ok
scalled frcm: HMain.

Gat$Page: 1%%x gets user page # for test frcam console

'** parm in - none.

woewewsvswe

. s arm out - loads 'pageno' variable.
1xi_ D,m % get sa dr of jetpage asg
. cal PrintdsStr n ;Pri
:high bIte of page nunber
call Get$H :1get hex digit
ani O0fh ;€lear high nikble
1xi D,pageno$hi ;addr pageno high
stax D istore i
:low byte - 2 ascii to 1 hex digit in pagenoslo
call Get3Hex ;geét hex digit-hi
an 0£0H ;Clear low nibble
mov B,A ;save high nibble
push B ;save high

128

call Get3Hex ;get hex digit-lo

ani OfH sClear high nikble

pog B .restq:e igh

grg B :cg bine hi"apd lo

x: D,pagenodlc ;addr pageno cu

stax D ;store i

g:%l Crlf +Skip a line after input

t#t*t*t**t****‘#####**#‘#‘t**#*#l"‘*##t***‘***8*‘*#‘*‘#‘

GETSPATTERN subroutigpe »
#t:att#st##**##tt###**t#*t##*#ttt'#t*tt#*#&*#*aa‘t#*t#tt

scalled frowm: Main.

..OO LYY 1}

Get$Pattern: .** gets user pattern for test frca ccmnsole
s** parm ir - ncne,

. 3** parm out - loads ‘'pattern’ variable.
1xi b,msgSgetgt addr c get pattern msg
call Prin€38S5+ring .prznt it
call Get$Hex iget hex digit
ani O0fQH :Clear low nibtle
mcv B,A ;save high nibble
push B isave bhigh_
calil Get$Hex ;get hex digit
ani OfH iclear h-gh nikble
pop B .resto:e igh nibble
ora B ;combine hi ard low
1xi D,pattern ;addr of pattern
stax D istore it
call Crlf ;Skip lipnes after input
ca%l Crlf
re

*tttt*tattt*#*t***##*t**tu#***sa*t###al#**t*#tttt#*##*tt**

*x T$CONT subroutine

*t#t**tt*#**t*t#**at*ﬂttt**t*t*t##*#tﬁt##*tt**tt#t###tt##*
. ;called frcm: Main.

nitfCont: s*% inits the MEB controller

:
:
I

H parms in - none.

;*%* parm out - none, .
lx1 b,nsgSinztc ;addr of init asg

all Prin<¢s$string .pr;nt it

B,MBImaxpa es Eages 1n each loog
l!l H,P$1copszlo ss ize 1lsb port
pov 4,C ; load lsb of loopsize
1xi Hd,P$loopszhi ilcopsize asb_ pfport
nov 4,3) .loa asb of loopsize
1xi H,pSpgsize, age size peort
avi u,uBSpageslze oad page size
lx} H,P$cn eg .ccnnand regzster FCrt
avi n.nBSrese $cmd ;issue reset coamand
1x3 D,gsngcnec .add: c¢f done asg
call Printdstring ;print it

ret

i***itﬁ***.‘##*i****t*****##***#**“**##‘t‘l’**ﬂ**#tt*“*

T$DEVS suktrcutine -
t#*at**t**###*#**ttt‘ttt!t*#*tt#ltttttt#*ttttttt*#ttt#t#*
cal%ed frca: Main.
-** nits <ach tubble device cn the MBB

4 ececcrvcee
ill

nit$Devs:
T parn in - none.
e B out - none. .
1xi b,msgs nzf .addr of init asg
call Printsstring rint it
avi A,0 irst device #

129

Fach$dev:

pu PSW ;save device #
ad 0304 ico vetg to ascii
call pPrint$Char ‘print it
1xi D,asgidev .addr of dev amsg
call Pr1nt$$t:ing £int it
po PSWH estore dev #
ix H,P$selbub .select bubble port
pov N,A ,select thzs device
Rush 33 ;save 3'
xi R,P$cndre ;command register gort
avi M,¥BSinit$cad ;issue init coamman
ca Wait :let ccentroller work
1x D,gsngone .addr cgnt one msgqg
call Prin¢s$string sprint
pop PSW ,restcre dev #
iny A shext device #
cpl O8H ;last dev;ce
nZ EachSdev s1f not, do next |
xi $doned ;addr done asg
gg%l Prln $string .pt;nt it

-*#**tt***t##*##*‘*‘*It‘*‘t#*#ﬁ*‘***.#**‘*.#**t*‘tttttﬁ*‘t*

ADSPAGE subroutine *
-ttttﬁtt#tl**t**#*#*****a#i'*tt'ttt#tttu*t#t#*vttt*tt#tt*tt

;called frcse: ReadSPage‘ Write$Page.
Lcad$Page: i®% loads the variablé pagenc' tc the MBB

:®** para in ~ none.
s*% rvarms out - none.
1xi #,pagenosic ;:addr of page # lst
mov A, .to accum
1xi b, PSpsello age select lsb pert
, stax D’ cad it
p ! inx H .to page # asb
i inx D :1t0 page select msb port
tov A, ito accum
stax D' ;load it
5 ret
i 5ta:a*t:*-t*t*a::*tta*a***atwas:ttst:gtt**:att:taa:*t:tttt:
i P e PRINTSCHAR subroutine *
;tt#a*tt*tttttattt#tttttttl###t*tttttt*ttttttt#¢*#*#*#t#**t
s ,called from: ggif Init$Devs,Frint$1,
* PrintscChar: i#* calls Bdos to write a char to console
O parm in - char to vwrite in Reg A.
Pam parm out - none,
3 moy £, 1oad para for Bdos
mvxh gggd055concut func for Bdcs write char
3 ue
b call BdosSentry ;call Bdos to write
b pop PsW
b 1 ret

****#*****#**tﬁt*‘tt***##l#*##**#**.‘tt*#*‘ #***lttl##t***

RINTSOUT _subroutine
0*tttt*t#t$ttttttt##***tt#**##tttttttttttttttttnt*##t#tl#
;called frce: Main.
i%% reads fage from MBB buf-vwrites to cons

esesvevsa,
| X

{ : Print$ount:

;®** parm in -~ none.

;R parn out - none.
1xi ﬁ,msg Lt ;addr of print out asg
call Print$ tring sprint it
avi C,MBSpagesizZe {counter for bytes to read

130

Fre: 1xi D,P$rdreg ;tead data register port
ldax D ;load froa fifo to accusm
push B . ;save counter
call Prints$2 sprint what wvas read
gOp B ;festore counter

cr C ;:dec _ccunter

nz Pre ;rgad next if not 18D read
xi D,lsgsdone ;addr of done asg
call Prints$string sprint it

gatl Crlf iSkip a line

Q

ARRBEREERE R RERRRREE REXEEREBERRPRBR X EBE R RERRE RR G0 P PRk X Rpg Rk

E 3
* PRINTSSTRING subroutine »
AR DA RN R R AR RN A N 3 T e o o o 3 2 o R sk

scalled from: Ask$User,GetiBubble,Get$Page,

vewedsvewe

: Get$Pattern,InicdCont,Init$Devs,Main,
. . : Print$Cut,Recad$Page,iritesPage.
Print$string: +** prints a string to console via Bdos.
;#* parm in - addréss of string in reg D.
;®*% parm out - none. .
mvi g gd s$pstr ;func# for Bdos print string
[V
23t Bgos$ent:y ;call Bdos to print
PO PSW
re

RIRRIRBREERRARRRAAERABRRRARRRERRBRRBSRBRERER ARE X RSB RBRE KR
* PRINTS$1 subroutinpe *
AIRRXARRAERRARRRKREXXBREXIPERXRESEESREESRRERBRE S S FRRKBRR XK

. scalled from: Print$2.]
Print$1: ;*¥* converts hex value of low nibble to

: Ascii ard prints_it to console.

+** parm in -~ hex value to print in reg A.
;%% parp out - nope.

PY Y YT YR T

ani OfH ;clear high nitble
ad 090H icenvert ai
a
gcg 0uoH scenvert lo
aa
ga%l Print$Char iprint char
e

XARKREEEREZRRABRREE RAKKEEERRRRRERRERRRRXRR KB RREREFRRERRERE R
I PRINTS$2 subroutine *
AW MR R AR A el e Ao e e e S R e 2 a2k R o ok Rk R Ao R o
. ;called frcm: Print$out,Wait. ..
Print$2: :**® ccnverts one byte hex to two Ascii
3 digits and prints out one at a tinme.
+** parm in -~ hex value to print in reg a.
;®%® narm out - none.

LIS YRYY ¥

push Bsw ;save low digit
rrelrrelirrclirre! ;move hi nipble to low
call Print31 ;jconvert and print
goil gS? £$1 ;restcgg log -1g1§

a rig* sCCNve an rin

avi- A.bBYank !gignk chag. °© .
call Print¢$Char :print it for separation

.
‘
.
’

131

- ,n.«“;‘ - -

.a:w:t:t:att-tatttttt:::ua:‘ttttxtttntt¢¢~¢t:t:taaat::trtt:
DSCHAR subroutine *

-*ttt#**#**t*ttt*ttttttt#tttt#t#tt*ttt*t#tt*ttttt#t#t#ttttt
scalled frcsm: Ask$User, Get$Hex.

Reads$cChar: ;** teads one character f£rom the console
:** carp ir - nche.

'** arm out - char rend in req A.

avi Bdés$conin -func fo: BdcS read char

call B&o=$ent:y tcall Bdos to read

ant 07£1 .clear parity Eit

re

Qe

EREREREXBPPEPREBSRRRBERB R PR KR E X PR R BBEE 0 Rk R R0k kR 0wk kR

E £]
* READSPAGE subroutine b
RARREREEBER RN ARRE SRR R IR BB SRR B EE KRS EEF R XK ERR R R HRE P RRN N

;called frcam: Majin.
2ads$page: T interfaces with MBB to read a age
;** para in - uses 'pageno’ & 'bukdev' vars

:®*% parm out - sone,

call lLoad3rage ;load page numker to MBB
:1load tubble device numter
1xi .bubdev ;load addr of dev ¢
ldax D ito_accua
1xi P$selbub °se1ect bubble register port
nov u A ;lcad dev
iissue raad command
1xi g ;addr cf reading msg
f;ll gr%g Sstrinq 'pﬁiﬁinétre ister gort
avi M, uasreadgcmd Efssue feadlconmans
call Hal ;let controller work
1xi D,asg$done ;addr cf done asg
call Prln $String ;print it

1]
R ARRARA AR AR AR A A AR RN AR RR RN AR R R RN KKR kR
T WAIT sutroutine *
FEAEBARRARKRRERXAR AR ELELAR S XX BAER SRR ERRREEX XX EERR SRR URKK XK
-called frco: In;tSDevs,ReadSPage,
. Writelpage.
Wait: °** makes a delag whilé the cont works
H para in - nofie,
:*% para out - pnone.
1h1d :30 cycle delay at 2.5MHz
1h1d 0O :5 cycles e@ach 1hld inst
1h1d 0
1hld 0
1h14 0
Wait1: 1lxi H,P$statreg ;Status register port
mov. A, ;read statis register
push PSW isave status
ca Print$2 ;print out status
pop PSW ifestore status
anl MBSbusyScheck -busg psask check
2nz Jaiti usy, check again
xi H,P$statreg istat reg port-get last stat
mov A,H .read status redgister
call Print$2 iPrint out status

»
’
.
*

132

< rabimie

“-*t#t*tttt*tttt*#*t#&*t#t‘###*t*#####t‘*t#**#t#t*##ttttﬁttt
i* ESPAGE subroutine »
,-t:-aanattttataaattatﬁttta::ttttataa:*at:t*ttttvtattattnqtt
: ;called from: Main.

. Writef$Page: ;%% interfacas with the MBB tc write a page
T parm in - uses ‘'pageno' & 'bukdev! varts

i*% parm out - none,

call Loaa¥Page load frage nusber tc MBB
;load 18 test bytes to Pif

nvi .MBSragesize .counteg for bytes (18D)
‘ 1x3 D.PSw*re .vrlte ata register port
1xi H,gattern ;addr cf gattern tc Write
. mov A, :load pattern to accum
Writet: stax D s¥rite a b te +o fifo
1cr S ite °dec co%nt 18D Let
1z Ti aap if not written
:1oad bubble dev1ce numEe P
1xi D, bubdev ;lcad addr of dev ¢
ldax D ito_accum
l 1xi H,P$selbub 'select bubble register port
: mov M,A :load dev ¢
, ;issue write command
, 1xi D,msgdwret ;addr cf writing asg
! call Prin€dString sprint ét
/ lxi H,P$cadreg :ccmmand register pcrt
; nvi M,MBSwritescmd .lssue urzte coamand
/ call dait et co oller work
i 1xi D,msngone one asg
, call pPrin€$string .ptlnt zt
1 ret
4 PRIARRARBREEREREAAKE AKX RRERRARXKRR XA BRERER SR RBE RS RRERRRK K
4 H DATA AND VARIABLE AREA *
1 j TABBRERFARKRRRRARRKIRRREXR AR AR REAE R IREEREREREE RS FRRRIRR R K
') bukdev dr 0
/ pagenc$lo db 0
' pageno$hi dt 0
! paftern dt 0
msgSaskfunc db 'Enter a R to read, ¢ to quit, all else !
dt 'is write: ‘',ecl
msg$dev dt dev1ce #¢ initin ',e0l
msgfdone db ' done.! ,cr,lf,eo
nsgfdoneg db *'Done uzth controller. eCE,1£f,001
msg$doned dt 'Done with devices,' ,cr,lf,cr.lf,ecl
msgsqetbub db *'Input 1 digit bubble # b '.ecl
msg qetp% db 'Input 3 4igi+t hex page (0 0-2605: eol
msg$getp gg 'Input 2 digit hex test pattern (0 -FFf: '
ns nitg db ' tia centroller.... ',eo0l
n=g§init % I %*ia ng the dev%ces... :cr 1f,eol
dk 'Page rea is: ol
msgSqult dr 1f,ér,lf,cr,'*» 6nd o0f Test *%*! 1f,cr,eol
nsg$rd db 'Readlng a rage... ?',eol
msg$signon dt 1lf,cr %x*x MBB-80 c,{n-eo '
db 'aiasﬁosrxc TEST #%),cx 1f,cr,lf,¢c
msqgdwrt dtk 'Writing a page... od

’

133

e S

étable fog conver+ing ascii to hexadecimal
rg
o 08818 db 00H,11H,22B,33H,44H,55H,66H,77H,88H,99H
T
9 db OaaH,OEbH,0ccH,0ddH, OceH,0E£H !

BAERRERR ARG ARERER R EE SRR PEEEBRE R BERRRE R R BT RN B YRR KRR E
-

End of Prcgran
BERBRERREARRERBREBREERAE SRR PSSR R AP R AR SRR R R EER AR R &

END 0100H

LY YY T Y
* B

MERER AN S EL il AL 3
.
——

134

AEEENDIX B
PROGRAM LISTING OP DIAG86S.A86

FILENAMES: Pascal = MB.DIAG86S.TEXT
CP/M = DIAGB6S.CMD

e ok e e ol e sk e e 3K Sie 3k ofe 00 e ok e e e 3 ke 3 0o o 2R 3k o 3 o o0 2o 3 K ROl 2 R KR 30 e 2K R K K R R e Rk Kk K

8086 DIAGNOSTIC TEST FCR PC/M MBBE-80 BUBELE MEMORIES *
WEE R PR TR T SRt P P Dt i e P R P E

CCNFIGURATION: .
HOST - Intel 86/12A 3SEC, 20 address lices, M¥DS systea,
Difahbui on 86,124 converting to low 8 bits
a igh.
MBB - interrgpts iphibited, single-page mode,
20 addreéss lines.

This program writes and then reads a test pattern in

€ach page of eacn bubble chip on MBE-80 boards. Error
diagnostics are printed as grrors are found. An error
lcg'is printed at the end of each pass. Testing is
ccntinuous until any character is keyed into the console.

The M4BB-80 controller tase address is pead into variable
YME_contbase'. MBB-80 address select pins must ccrrespond
tc This address. This prcqram uses memory mapped I/0
thrcugh the base address.

CARERERRRREREKERREEBRRRRRRBRE R R RE R ERBREERR R RRE LSRR R ERR R R R

Jeffrex Neuyfeld and Michael Hicklin CcsS-03 Thesis *
DRARREERERRRRARRERRRARER SRS RE SRR NIE SRR R RRRBR SRR RRRR R AR KRR

LR T L T LY Y I P TR T Y PR YT R Y AT YR YR YR P YR TR 1)

:%# pdos functicn numbers fcr calls =)

édcs_conbuf aequ 10 ;console lngut striang funct #
Bdcs_conout agu 2 sccnscle output char funct #
Bdcs_constat equ 11 s1get ccnsole status funct #
Bdcs"pstring equ 9 ;Er;nt string until '$' funct #
Bdcs_reset aqu O sCE/M-86 resét to CCP funct #

t* MBE characteristics * .

MB_FEuflen equ 18 stuffer length for single page

MB” maxdevs equ 7 s tubble devices are #0-¢7 .
MB_maxpages equ 641 +%# of rages on each bubble device
¥P_ragesize agu 18 t+tubble device page size

:* MBB command byte masks (with interrupts inhibited) =*
ME_tusg_chgck 2qu 00100080E ;¢cnt busy? status chz¢ck (20H)
MBTini%Tcm egu 100000018 ;initialiZ2e the ccntrcller é81H)
¥B8-r=ad_cad aqu 10000010E ;single-page read _command (824)
MB rese¥_cad =2qu 11000000B ;reset the controller (COH)
4B_write“cmd equ 10000100Z ;single-page write coammand (84H)
’ .

;% Miscellaneous esuates * .

tlank . equ 020H yAscii blank

corkuf_size eJu 890 :1Size for ianput buffer for comnsole
cr 2qu 0d4H ; Ascii carriage return ccrtrcl char
1 equ OaH sAscii line féed control chaar

138

|
|
i
i
|

TN R Y Ty Sy TN

(RABMRRRRRRXRERRRBRRERERK AR AR EERBRBR R XSRS EE RSB SRS R SRR R R LR kB R

e MAIN ERCGRAM - CRIVER *
:nt‘**t*t#*tt*#*t#***tt**t#t#t###t*tﬁttt*tttttt#ttt#ltttt*tt
CSEG
dracssés: call set_Up ;d0 initialization
11 Get_Cont_Addr iget address of uBB 80 base
Test_lo 1 Ini¥_cont :init the cont and devices
€s op.
call Get_Test_ Buffer ;get a test pattern,fill buff
call Hrzfe Fag °u:1te a gage to bu ble
cai} Rea ag iread é froa ubble
ca Checl rors .check errdrs 1in write/read
;advance to n€xt page in a device, see if last page
inc curr_page_no .1ncrenen£ current Eage
cap curr_page_nc,MB naxpages- last gage on dev?
jnz Test_loo ;if £ot, test nex
;wa3 last paje,advance to next fubble devzce on board

moy_ DX,o0 fset psqg_donebyb ;addr of done_bub msg
call Print String ;write msg to conscle
cmp curt_Yub_no,MB_ naxdevs slast bubble on board?
iz Done_pass sc, done with a pass
;prepare to tTest next buEble device
inc curr_bub_no ;if nct, increaent device #
ROV Curr_ gage no,0 .set gaqe number back t¢ zero
in¢ err .ptr ¢ next entry (dev)
jmp Tes E ;JoO test next device
'flnlshed w’fh all Qdevices on Loard, print summary
¢ :prepare to run another pass if not stopped by user
cne pass'

call Ertor_Summary ;:Pprint error summary

call End_p3ass iend of pass hcusekeéeping
;see if anyfhlng keyed in at the console

mov Bdcs constat ;function # for Bdcs call

call Bd .call Bdos to _get cgns status

cmp AL, 01 ;01=char keyed "in, 00=nothing

jz Done_test isomething keyed, user quits
suser wvants To continue
mov. DX,offset msg_testing ;addr of testing nsg
call Print_String ;¥rite msg to conso
jap Test_Toop 'keeg testin
suser wanted to Juit the testin
Ccene_ test:

call Close_Up :do end of run houeekeeflng
mov CL,Bd0s_reset sfunction # for Bdcs ca

mov DL,O paraneter to release memory
call Bdos icall Bdos to termipate prog

“asnkkprkxkhkkk ond Of Maip Pregram **XAXAIEIKRRXERRERRRBRE

*tt**tttt******t##**t#**t#t*t#t*#*tt****#**t#**#*##*ttt**#
BDOS CPH/BGL sukroutin *
t*t**#******t** PRSI N2 11513
°called from: Clgse Up,ualn,Get Cont_Addr,
Print_Strin PutChar.”
Bdcs: ;#* entry tc Bdcs_ via_sof vare interrupt 224
i#* parm in - caller loads reqs as rper req
i¥% parm out - as sugg ed by Bdos returns
224 Softwire intercupt

@stesvsesvtuseine

L2 R

-
o
et

136

(EARBRBARRARBEIRBRRERRKRESRIBRERARBEERIER SRS R R BRRERBRR R RS RS
ok CRECK _ERROBRS <subroutine *
{EAARRERRRRARRRAARBARATAS RIS RANIEBE RN SRR R R AR R AR AR K ERR RN
;called fros: Main. .
Check_Errors: ;%% see if read what wvas written
;*% para in - none
;%% parm out - ncne

nov iL, attern ;pattern to accuam feor nanigul
aov CY,MB buflen scounter fcr loop thru bu% er
mOov BX,ofY¥set test_ruffer ;index into test ftuffer

Test_byte:
cap EBX o AL ;compare buff to pattern
jz ood_test ;1f goed, check next byte
push AX!pish BX!push &Y ;Save gatt/;uff addr/cntr
call Err_Out ;it is bad, print error

call Lo9_Er:or H ©g errcr
] pop CX!Pcp BX!pcg AX ;restcre cntrsbuff addr/patt
32 Gcod_test:

¥nc BX ;increment index
logp Test_bhyte ;dec CX and loop if not zero
re

W a2k ok 2 K ok ok K A K K e 2 o ke e 3 e ale e K e Rl e g a3 e ke e R ok K K

*

* CLOSE UP subrcutine

e g R A A e oo ok e o o o K e Ko o a2 3 ok o O 2 2o o 2o o oK o e g o e o o o
;called from: Main.)

cse_Up: ;** reads garbage from comnsole,issues goodbye
:** parm if - néne
;*¥* parm out - ncne

sclear stop input characters froa the conscle tuffer
mov CL,Bdos_ccnktuf ;input console string func#

LI TR Y YT Iy

(@]
=t

mov szoffsét ccns_buff ;area for coas ifput
mov b{.e ptr (BX],Scnbuf_size;tell Bdos buff size
mov_ DX,BX :1load parameter_reg for Bdos

. call Bdos ;read the console

;issue_the %oodbye message .

call Crl °sk1€ extra line
moy. DX,of fset msg_endtest ;addr of end test msg
ca%l Print_String 1WIite msg to conscle
Te

RARRRERERREEARFRER KL ARKERE SRR RRERRERERRER BB ERRR BB RERRRR RN
b

-
* CRLP subrcutine
CARERRARERERBRRRRRBARRERRRRE R REEREEBREFER AR KRR R AR R Rk

;called from; Close_Up,.Get_Cont_Addr,

+2nd_Fass,Init_Ccnt,Main,PTint_String,Set_Up.
Crlf: i#* Fends carrlage returd,line " fee %o coﬁsp
*% parm in -~ none
;** parm cut - ncne
mov_ AL,ct ;carriage return char
call Putchar ;write it tc ccnsole
mov_ AL,1f ;line feed char
i ca%l Putchar :¥rite it %0 console
r2

ARRREBERRREEERBER MR ARXEREREEERRERRERSRRBERRRRE YRR ERRREEE AR KRR
x

*
» END_PASS subroutine _
AIRREARREEKERERRRERTAERERRREREXRRRRRBRRRRKR R QRR R BN R RKE N RN
scalled from: Main. .
nd_pPass: 1% perfcrws end of pass housekeeping
+*% parm in - fnone
:*%* parm out - ncne, effects global vars
sconvert pass # tc Ascii and print after pass message
mov. Al,pass_no, . ;Pass number tc accua
call Hax_To_XKscii icenvert to Ascii h

trl ecesdceres

137

e

aov BX,o0ff=et as Fass; addr of pass # in asg
mov by+te ptr {BX]J, DE load high byte tc asg.

inc B np to next position in asg
aov ;tefgtr [BX] ,DL ;10ad low byte to asg

a0y set msqg_ dcnepass ;addr of done pass asg
call Print_sString ;¥Iite asg to conscle
call czlf - 1skip_a line

sinc pass number and resét all variables fcr new pass
irc pass_no ;2dd cne to pass nulber

MOV Newvwpass flag iset nev-pass ag

aov curr_bub 6 ireset to bubble evxce 0

ROV curr pag§ ireéset page number to

mo: errp¥r of!se errlcg ;reset addr of ertor log
re

,tttt::*tt**:*aaattttt:ata*:tattt**ttt:::t***t:a:t:ttxttttat
™ ERR suhgoutln
-tt#*#**tt*ttttttt*!ttttt##t *ttt**aatata**ttttt:wtsttttttt
;called from: Check_Errors.
Err_Out: ;** issue an error message to the ccnsole
i#* parp in - BX addr in buff ¢f byte error
i#% parm out - none. effects global vars

push Bx ! push_BX i1save addr of error twice
cap newvpass_ flag,1 .;s this a new pass ?
jnz Pr+_err s1f nct ptlnt €rTCIr now
mov newPass_flag,0 iturn iag
aov_ DX,0ffsét msg_header ;loa addr of header
call Print String .prlnt the header
:put zeros intd all érrcr ccunts in the 1log
mov X,MB_maxdevs+1 ;count for § of dév to loop
cir 1 ACvY ax of¥set errlog ;addr of error log
r_log:

a0v b{te ptr [(BXx),0 .clear log entry error count

inc bunp go;nter €0 next entry
Ert loop Clr_log CX and loop 1f not zero
rt_err:
- mov_. AL,curr_bub_no :bub dev # to accus
call Hex To_Xscii scenvert tg Ascii
nov asg_e_Jdev,DH ;aove 1in bilgh kyte to msg

mov msg_e dev+1 CL ;mcve in low byte to asg
o bt B Re p3f ChERpage novdind bype cf pages

aoy e cu a) i e C age

call Hex o_ A§c§1 .gogvtrt scY p 9

mov msg_e_Tage ;high te to Bs

1ov @msg_e page+ DL lov by e to nsg

mov_ AL,By¥e ptr curc 'page_io ;

call Hex_To_Ascii jcenvert io ASEii

nov msg “e_page+<,DH ;high b te to Bs é

Bnov g e_page+3,DL ‘low b¥ e to asg 1g 2)
-compuue an 13ad byte cflset of error in pag

g ;restore addr err tyte offset
ad T_ bu‘f equ cffset test_buffer ;fcr ccmputation

% page#

sub “BX,addf_buff ;comPute err offset in buff
mov_ AL,BL ioffSet to AL for ccaversioa
call Hax To_Ascili .conve;t to Ascii

nov sg_e_Eyte,CH ipove 1in hign byte *o asg

nov mog e byte¢1 DL ;move in _low byte to msg
:1load pattefT That wvaé written and vhat was read back
4 moy_ Al,pattern sload pattern just written
| call Hex_To_Ascii icenvert to Ascii !
- a0v @msg_e_vwrote,CH ;move in high byte to asg
mov msg e” ~wrote+1,D0L ' ;move in 1dw Lyte to asg .
e

pop BX °restore addr cf err off
aov_ AL,[BX] slcad te just read back
ca%l Hex To_Ascii .cgever Lg as§1% .
» mo —_e_Tea acve 3in e to as
. BOV msg a= reag‘1 DL imove iR 259 byle to msg®

138

iy A - v m

mov_ DX, offset msg_err ;addr of total error asg
cg%l Print_String 1pPrint the errcr sessage
o

PP TITII R LA PR P IR L LA AL PRI E L AR LS L L R R
ERROR_SUMMARY suktroutine *

BARARRERE AR BRAEARAETAR XA XGRS SR AR R ENERBREEREXRE P RS BBRE RSN
icalled fros: Main. .

Errcr_Summary: ;** outputs summary of errors cm each device

» %%

+** parm in -~ nche
e ga:n out - none)
mov. DX,0ffset asg_suamary ;addr of summary asg

call Print_String ;vrite asg to conscle

;Step thru errlcg~-cofvert tc Ascii - _print err_counts
mov CX,MB_maxdevs+1 ;ccunt for 1loofp - # of devs
mov BX,0f¥set errlog ;addr of error log
aov DI,offset msg_ccunts ;addr of msg Sum counts

Frt_loop:
pmov AL‘(Bxg -get count from errcr lo
push BX!push CX!push B ;save addr,counter,index
call Hex_To_Ascii ;cenvert to Ascii
pop DI POF cX1 op EX ;rest index,counter,addr
mov byte ptr (DI],DH ;load high byte t¢ asg
inec D ;bump to fext pos in msg
mov byte ptr [DI],DL ;load iow bzte to msg
inc D ;bump to next pos in asg
mov g¥te ptr [DI],blank :Ascii blank t¢ msg
1]

inc bump to next fpos in asg

inc BX iincrepent buff addr to next
loop pr*_loop sdec CX and loop if not zero
moy X,0ffset masg_ccunts ;addr of asg suym counts
ca%l Print_Strlnq ;Wwrite msg to conscle

re

2o e o 2 20 2 e o ok SRR o 2 o e TR e ol Gl e ke A ok R 2 o ek ok o a3 e akake ok ke kak o kK

E
* GET _CONT_ADDR subroutirne *
2 AR R ok o e A TR o AR T 02 o 20 o AR A 2 2ok e A o e R R K
;called froam: Main.
Get_Cont_1ddr: ;** gets base segment address for the MBB-80
;** controller from the user at the console.
+** parms in - none
;¥* parm out - none, updates ME_contbase 1
nov ﬁx,o fset msg_getaddr jaddr of Jet cont asg ‘
call Print_String ;write asg to conscle
sget base addTess kéyed in by the user . ‘
aov CL,Bdcs_ccnktuf ;input console string func# /
aov DBX,offsét cons_buff ;area for_ cons input

asov byfe ptr [BX],Gcnbuf’size ;tell Bdos size 1
mov DX,BXP (8x1. :1load para for Bgos call]
call Bdos ;read from console ,
call Crlf . ;sklg a line after input
:mak2 sure only focur dzgzts eyed in
€ 1 tells hov many

cmp by*te ptr (BX],T ;see if exactly fcur read
ne Error_imnput ° = ;if nct 4, error

:pake sura all four digizs are valid hex
aov Bx,ogfset cens_buffe2 ;%gte 2 starts_data

20V szoffset cons_buffe ;b¥t
3 4

xor AX,A ;used T Ascil takle index

mov_ CX,4 inumkter of digits to check
Check_valid: L. .

fov AL,BBXJ ;move digit to AL for_ chking

cap AL,D30 ;check td see if tco low

ib Error_input .

cap AL,Ou4BH ;check to see if “co high

ja Error_input)]

¢mp AL,039H ;chk mid-invalid (2aH-4O0H)

139

jbe valid hex
cap AL,047TH

ae Vaizd hex L.]
nps Error_input ;+it is in the niddle - error
Valid_hex: .
Sub AX,030H :=-30H to _getr table index
push BX' ;save buffer addr
mov BX,AX 14X is index to tatle
nov AL Ascii tahle[Bx) :table ook up
pop BX' irestore buffer addr
1 aov b;+e ptr{ BX],AL ;store ex back in buffer
inc inext 21
locp Check_valid ; 90 chec it
;convert U vaIld hex dzg itS tc a binary numkter inm AX
mov BX,offset ccns ff+2 ibyte 2 starts data
mov AH,[BX iget flrst digit
mov CL, {Shift it to igh nibble
shl AH,CL
inc Bx' sincrement index
or AH,[BX] +2nd dig or*ed intc low nibb
inc BX ;lncrelent index
nov AL £BX] .ge third digis .
movy :Shift it to high nibble
shl AL sCL
inc Bx ;lncrenent index

or s4th 12 or'ed into low nibb
1store con{rol er base address that was built in AX
mov MB contbase,AX
jmps Ge¥_cont_ ret :go return
;erfor in inpat, issue neseage, retry
Erfor ’nput'

Boy offset msg_errinp ;addr of ezror amessage
call Print _String °Hr1te msSg to console
;skip a line
ge Ge* COnt Addr .go ask again
Get_ con

e o el S 3o 2 e ok 298 afe afe o kol e e e e e o e e s o 20 300 2 3 R A 3 o A i KR oo ol ok ok ek ek o kol ok ok

GET_TEST BUFFER subroutine *

ot#a*t**ta*tt*#*tﬁtﬂﬂt**!tt**t***#*##tttt***l*t**t*ttt****t#
;called frcm: Main.

Get_Test_Buffer:;** increments pattern and loads test buffer

Ix% para in - none

s%* parm out - none, effects global vars

sseswe

. inc attern .add one (1) tC pattern
: nov L,pattern attern to accua for manipul
mov CX,MB_buflen Qop counter - sjize of huff
, aov BX,0flset test_ uffer ;set index into buffer
Fill: nov BE],AL ;load a byte
inc X ;buap index
loop Fill idec cX, loop if nct zero
ret
2 J :**:-sa-:::**a****a*tt:*a::***t:****t:aa*s:::a::sa::a:::tmt*
o* HEX_TO_ASCII _subrou

tine b
-*a****t#***:*#*t*tlttl**t##**tt*#t***l**#*t**attt#l-ttttl#*
scalled from: End_Pass Err Qut,Zrror Sunzgry.
' Hex_Tc_Ascii: i®% converts a heX number %o ifs hex~isc
o parm in - AL has hex byte to ccavert
e parm _out - DX contains hiélio Ascx; byte

! sconvert low nibble of AL %to As¢ii hex dzg
mov AH,AL ;save hex # for hi nibble
and AL,OfH ;clear hi 4 bits 1lc nibble
add AL,90H -handles 0-9 (90H¢u0H=130H)
daa nal a au <
ade AL,40H han le a~f8 (418-u6H Ascii)

140

M e AR R 1 1 o jarac . .

daa ;decimal adjust

mov DL,AL ;lov nibble Ascii for ret
;convert h&éh nibble of al to Ascgi hex 3§g£t

aov AL, AH ;aove to AL for daa ops

i SLoC PR eEh T nioE1e 0 10 nibbl

s ;shi in e tc lo.n e

$33 AL¢SEa Pe e i Teato23PR 384T 8082130R)

daa sdecinal adaust .

adc AL,u40H ;handle a-ffi (41H-46H Ascii)

daa sdecimal adjust | .

mov DH,AL shigh nibble Ascii for ret

ret

Bolreriee s e o A e A i A AR AR 2 e e A A AR A 2 k2 Rk KRRk kR

INIT CONT subroutine *
o0 202K e ok ok o o 2ok e ol o A A K R Ao R R MM A R WA KR K KK
. ;called from: Main. . .
Init_Cont: ;®*% inits the MER controller and each device
;*%* parm in - ncne
;%% parm out - none .
nov 6x,o £set msg_irnitbegin ;begln init asg addr
. .,call Print_sString ;wri€e msg to comnscle
sinitialize gage sizé& and mincr lodp size
mov AX,MB _contbase ;address of controller Lase
mov BES,AX sload ES to address bubble
mov AX,MB_maxpages_ ;pages per bubble device
mov ES:P_Toopsize_lo,AL ;loopsize low t{te
aov gg:g_loops;Ze_hl,AgB;loogs;ze hi by ez
nov : ageésjze_re a ze;page size re
;issue reset @ aDand - ¢5 che cohtfollsr’ Pod 9
mov AL,MB_reset_cad ;reset aask byte
. .mov_ BES:P_Cmnd_r€g,AL ;issue reset comaand
:initialize each bubble device .
mov CX,MB_maxdevs+1 ;count for loop-# of devices
g hmov AL,O ;device # to initialize
cr_2ach: .

- mov ES:P_select_tubdev,AL ;select each device
mov ES:P_cand_re€qg,ME_init_cad ;init this device
push AX!gﬁsh CX!ridsh ES ;save bubble #,ccunter,ES
call wai :valt for controller toc work
pop BES! pcp CX! rop ix ; restore ES,catr,bubble #
inc¢ AL snext device nuaber

. locg For_each . 3;dec CX, loog if not zero
;issua msgs Tndicating init done and test in progress
noy Xeoffset msg_initend ;init done messagé addr

[R]

LYY YT 1Y

call Pripnt_sString ;¥rite asg to conscle

call Crlf ;Skifp an extra line

moy Dx,offset,nsg_testlgg stesting message addr
ca%l Print_String swrite asg to comnsole

re

]
PRARRARERE XA RARIARAFKREN AN R R RN RRDR RS BRA AR R B KRR RN KK
' LOG_ERROR _subrcutine *
H 22 afe 3k ok 200 3k e 2020 25 e 3k o afe a3k o9 ok ST e e 3k o Aol e ok 30t 200 o 3 30e R 3 3 3ol 3K afe oje ok R 3k ek 3 i e ok a0 ok o 3k 3k e ok
;called frow: Check_ Errors,
Lcg_Error: ;** 1cg the error fOr use ipn pass grintout
:** pafm in - none
;1*% parm cut - ncne, effects global vars
0V éx.err tT saddr of errof log to BX
inc Dbyte r (BX] ;add cne to error ccunt
nz done_log :if not overflow, all done
ec byte ptf (BX) sinc tce big, reduce to max

dene _log:
= gret

.
’
.
L

141

P

t
]
i

i T T Vb o ¢

Ara e AN,

]
*
-

Putchar:

x
E
=

LIX I X ¥
| BN

Set_Ug:

R2ad_Page:

Print_String:

nov

catt

ret

aov
mov
call
ret

*##****tt***##t#*****#*‘*t***t*‘##‘#C*##**#tﬁ###*****#*.t*
READ
*#**#*#***********’*##**#‘**#*.t‘*#*****#*t*#*######**t‘**

1Select

mov
aov
mov
aov
aov

' :select b

ROV
mov
B0V
pus
cal

o
-reag gron MBB FIFO Luffer into test bu ..er

aov
a0V

Fead_byte

a20v
aov
inc

100
etp
a-tn*-t-ttt*#tt#tt!tttat‘#l‘tttttltt.*ltl**Ittt#.ﬁ.:t#-!t#
SET 0P rLe
t*ttutttt##tattttltt#tt"t‘tt#‘##*tlttlttt“t#t‘nttt#ttttt

call ¢&rif :skip an extzd linse

call Crlf +skip an axtra l-ne

B0V X,o0ffset asqg_signon ;signon asg address
call Prlnt _String ;¥Tite asg to conscle

pa e number

-*****#t**#**#*#t**t****#‘#‘#“‘*‘#““**t#*#***‘"‘litl‘l*ﬁ

INT STRING subroutine »

PR
'***#**t*****##***#**.ﬁ‘*.****##“‘.*."t‘*‘t#"“#.‘.‘#‘**t

.called from: Close UB +End_Pass,EBrr Oug

Error=s nnary,cet Conz_A ar,
Init_Ccnt,Main,Se¥ E

;¥* prints tuffer addressed untiI '$' hit

;** parm in - address c¢f buffer in DX

Hada arn out - none

éL,B os_pstring function # for Bdces call

Bdos ;cal Bdos and print

Crlf ;skip a line

#*#**#*#****#***“‘*‘*#**##t*t***‘*#**t##t##“##‘#‘*

CHAR sulkrou

PUT ine »
t:*tt#t#*:t**#ttt**ta:*ts:tt:*tt*tttttvtv::t&t**t*tts:tttt

;called from; Crlf.

;** yrites character froa AL to console
(% parm in - output char in AL

Tk% arm out - ncne

&L,Bdos_conout ;function # for Bdcs cail
DL, AL ;1oad char to Bdos reg
Bdos ;call Bdos and send

PAGE subrouti

;called from: Nain.

i*x reads a page into test buffer from bubble
;e para in -~ Aone

T parm cut - ncne, effects global vars

.HB conthase idd ess of controller base
S, ES to address bubble
AX, curr _page_no :current paie sumb er testing
ESiP paqesel 12 LT ipage select lo Eyte
ES:P_ragesel”_hi AH ;fpage select hi Lyte
ubble dévice~and issue read command
AL,curr_bub_no ;curr bubble number testin
ES:P_select” bubdev AL ;select current dev
ES: 9 cand_reg,MB_ :ead cmd ;issue read FIFO
ES Tsaye” %S
Hait ;wait for com-voller to work

;restore ES

Wew

len :ceunt for lo buffer si
Bx,ogtset test buf% ;set %ndgx gnto buf

AL,BS:B_rdata_reg ;read a byte intc accuam
i],AL ilcad accum’ into buffer
s;increment index
Read_ty*e ;dec CX, loop if act zero

[++
Lol

sutroutin

;called fros: Main.
is« Tnits variables and issues signon asg
i#* para in - none
;*% para sut - ncne, effects global vars

142

mov_ DX,offset msg_version ;version msg address

call Prin%t_String ;¥rite asg to coasScle

. .call Crl¢ . ;skip an éxtra line

sinitialize all variaktles and flags L

mov newpass_flag,1 ;flag indicating new gass
mov curr_bub no,6 ;current bubble # to
aov curr_pagé_nc,0 ;current gage ¢ to 0
mov pattern,? ;initial test ga;tern is 1
mov pass_no,] ;initzaé gass is 1
:o: arrp¥r,offset errlog ;addr of error log
e

ARRRRERARBBEBRREREBEBRRERERE R ERBE SRS ARE R RE SRR RS RN R R RS

WAIT subroutine » *
AREMAERRAARAERRKREERBRKXRR SRR SRR B EEPRXERE R ERER P ERE KENR R XN
. ;called from: Init_Cont,Read_Page,Write_Page.
its ;** checks status ¢f uEﬁ contrcller for busy

;** keeps checking (wait) until not busy

+¥% parm in - noné
s®% parm Qout - ncng
mov Ax,m _contbase ;address of controller Lase
mov ES,AX :lcad ES to address bubble
See_zero: .
mov AL,ES:P_status_reg ;get status register
and AL,MB_busy_check ;is it all zeros ?

A eresvieren
%%

[+

jz See_ze€ro ;11f so,keep checking for one
Ccnt_busy:)

mov AL,ES:P_status_reg ;get status reglster

and AL,MB_biusy_cheCk ;seé if busy, and to amask

1n% Con+_busy ;+f busy, check again

Te

ARRRRRRAERRERREAERARBEREIRRRRAE AR S ISR R SRS RS RARR B RESRRREE X R
WRITE PAGE subroutine *
o0 e e e o o ot e o ol 30 S o o S o e o 2 e e A A A e o O o 0 o o K
. ;called fros: Main.
cite_Page: +** writes a page from test_buffer to bubble
;** parm in - none
$*=® parm out - ncne
;Select page nuamber
mov AX,¥B_coatbase ;address of controller base
10ov ES,AX :load ES to address bubble
mov AX,curr_page_no ;current page # testing
mov ES:P_pagesel”lo,AL ;page Select lo Ekyte
.mov_ ES:P_ragesel”hi,AH ;page select hl byte
;write from t3st buff€r into theée MBB_FIFO bufier
mov CX,MB _buflen ;ccunt for loop-bufier size
. mov BX,offset test_buffer ;set index into tuffer
Write_byte:

M ecesescews
* %%

mov AL,QBX& ;sbyte from buffer tc accum

mov ES:P_wdata_req,Al jwrite a byte to MBB FIPO

inc BX ;increment index

loop Write_byte ;dec CX loog if nct zero
iSelect bubble number and write FIFO buffer fo bubble

mov AL,currt_bub_no _;load accum w/ bub# .

aov ES:P_select_tubdev,AL ;load bubble device #
mov_ ES;P_cund_re€g,MB_write_cad ;issue_ write PIFO
ca%l wale Twait ¥or controller tc work
Tae

o 2 sjeate e sk afe e ol e ot 3 3 e e e e 3000 2 2ol 2 2 A 3000 8 0 AR o e 2 e 2C 2030k o0 o o SR SR A AR ok o

DATA SEGMENT AREA *
AARRRRARXEBBSRRXRERARREX IR RRER AR RS ARRRRR KR RRER R R RRR R

DSEG

wssseemicose
| N

143

_— ’““"!""“U-!EQ!!!!!llIIII!IlIIlIIllllllllllllllllllllll'

orqg 01004 ;leave room for base page
Ett -----—-------------Vat-ables------ - ———— - - 3
hsci ii_+able b 00H,Q18, 02H 03H 048,05& 068,074,08RH,09H
b 7 .50: Ascii”3ad to 408 - iavalid
b OaH,0bE,0cH,04d,0eH,0fH
coneg_buff rb conbuf_ size’ ;area for cons st51ng input
curr_bub_no rb 1 ;bubble device ¢ 0~7 téesting
curr_page_no rw 1 ;bukble page number testing
errlog rb MB_maxdevs+¢1l ;table for dev error count
erret:t rvw 1 ipointer to errlog - index
¢ MB_contbase dw 0000H s Ease segment addr fcr MBB-80
§ nevWpass_£flag tb 1 .flag fer indicating new pass
: pass_no rb 1 asS nuaber
: gattern rb 1 .-est pattern
- s2st_buffar rb MB_ruflen ;Luffer to hold test data
i** -------- string data arcea for console messages <=——===---%
isg ceunts th 5;58 maxdevs+ 1) *3)

' Decne with a bubble 3!
‘Done with PAS

(B 1

f*(Jser terminates testing...’
':etu:nzng to CP/ML S

{ msg_dcnebub
msqg_donepass
psg_d_pass

msg_endtest
msSg_erc

E : 8sg_e_dev \

#sg_e_page
tsg_e_byte

N SN) a5 e -

E Bsg_e_vwrote
} ssg_e_read
nsg_errinp '*» ERRCR: _not exactly 4 dlglts entered,’
o: invalld hex digitst!
cr, Kes digit segment bafe addr!?
ess cr 88-80 centrollér
:uugtsbe in hex (& digits, thén'CR only)"’

*Bubble Page Byte Wrote R=sad$!
'Initializing the controller...ﬁ'
'Contrcller is lnztzallzed.s

'** MBB~80 CP/M—-86 DIAGNOSTIC TBS; *x 3§
'Total errors for each device (0-)5
'Testing...Hit anz char (& CR!)

'to stop after this pass. 3

's;agle~9age Mode Versicn 1.03%
0 GENCND to fill last address

nd of variables REEFRERRE KR RHRK S RRE BRI LKA

- msg_g<taddr

nsq header
, sg_initbegin
o neq ipi%en
: msg_signon

msqg_summarcy
msg_testing

msg_version

[SaTer b Tan s e e aNo e Ao oo Te e oy JaP g Yoy Fory NoVig RetoaNoV g o e el

[B gegogegegogeogofegogogogagogagegegogdsgegogdogdogeyegodogegogegdegogdegogdey
L]
-

e ok 3 2 2 e 2K sk e o o e

‘ ESEG

t#***ttti**tt‘tt*t***!*#‘l“**t*###.‘*‘*#**‘#‘t“‘*‘ﬁ‘*#*‘

b]
I BB-80 CONTROLLER ANC PORTS
*##*ﬂlta***ttat*wn*at*wt**tt#t‘t‘###t‘#tat**t##*ttt*ttttt*‘

tsatae

wsqsesae

agesel_lo rbh 1 11ls by=e for page select 0
gagesel ai tb 1 Y ZYbits fog gagﬂ snleétf(%)

Yrggee

144

-y L LT i . 072k _ -

P_cand_ra th 1 ;conna d regis§ v
P rdati_regq th 1 ;re ta fe ster, (3&
P"wdata_reg rb 1 ;ullte data r g;ste
P status_rag th 1 istatus re lster (
P"ragecn¥_lo th 1 +1s byte ¢ paqe counte:,;S)
P_pagecn*t_ai T 1 +38 2 bits for page cntr, (7)
P §oops ze_lo th 1 :1s byte for ainolf lcop sz,
) ccps ze_hi th 1 188 2 bits for nxn lco
rw 1 sinternal use(e pcsE
P_Fagesize_reqg rbd } -g%ge size :eg er, f
W use on
P_select_bubdev :b 1 {tWo uses: gal hub le dev f ;
P_int_flag 2qu P_select_bubdev ; interrupt flag (P
i=awmnxkwus ond of Contrcller and Port definitions #*ssasuss
‘ §*#t*#v##*tt*#*tt**t*tt#t*#**#***‘tt*tt#*#t#t#**#**#ttt#t#*t
i ™ End cf ongran DIAGB6S *
H x ##*****t#*t##****t##l#i*#l# BRRPE R Rk g gk kg P

END

145

B e e D

Fo. L g

=

AERENDIX C
PROGRAM LISTING OF DIAGB6M.A86

FILENAMES: Pascal = MB.DIAG86M.TEXT
CP/M = CIAG86M.CHMD :

AARREEEBEXXBRBESRXERREBRE P BEEX R BEE S EERBEE BN EERERBRE R R SRR RS L

8086 DIAGNOSTIC TEST PCR PC/M MBE-80 BUBBLE MEMORIES *
RARRAREUARERERRR AR RERAXRIBRKR SR SRR ARBRRASRAESRE R ERESRRR R KR

CCNFIGURATION:)
HOST - Intel 86/124 SBEC, 20 address lines, MDS $¥sten.
Dg{ahbug on 86/1§A ccaverting to low 8 bits
a igh.
¥BB - Interrupts enabled if using vectorad inpterrupts.
Interrugts dgsabied b d%sgonnecting tge nter-
rupt Jumper on_the MBB becard if nct vectoring
interfupts. Multi-page amcde, 20 address lines.

This proqram writes and then reads a test pattern in each
sector of each bubtle chip on MBB-80 boards. Errcr
diagnostics are printed as errors are found. An error log
is rrinted at the end cf each pass. Testing is ccantinuoas
until any character is keyed into the comnsole.

The MBB-80 con*roller tase address is read into variable
*MB_contbage'. MBB-80 address select pins must ccrrespond
to This address. This grcgran uses pemory mapped I/O
through *he base address.

AARRRREEXRRRRKAEXREXBABERSBRBXEX SR ARRKR XK R R RRAXS X SERBREERR
Jeffrez*ueufeld and Michael chkl;g‘**cs-03, Thesis =

(RIEIR e DI ¢9s OO INII0000 00 000000900000 900000900 4090000090 000IDTINIVINIGITININC0sViDewe

R RRRRRKXEREREEAERARERRAREERRERRRRER R REXXXEXERERRREEE R RN
* Bdos functicn numkers fcr calls *))
dce_conbuf aqu 10 sconsocle zngut string function #
dcs”corou* equ 2 sconscle output char function #

- dcs”constat equ 11 ;get console status function #
dcs_pstring equ 9 ;Erznt string until *'$' function #
dcs_reset equ 0 ;CP/8-86 reset to CCP function ¢
* 8§259a PIC port assignments
ICgQ equ QcO +8259a port Q
ICe1 equ 0c2H +8259a port 1
* MPR characteristics *

B_kuflen equ 144 ituffer length for secter
- BE”int_mas equ 1111110 1E ;bask to enable MBB interrupt
K ¥YB_int_type equ 17 .tyge 16 is IR0 as defined to
T +18<59a PIC in ROM 1init, ¥BB ¢ill
;generate interrupts over this
H e.
ME_paxdevs equ 7 ;bubgge devices are #0-#7 .
MB_saxpages equ 641 ;4% of pages on each bubkle device
{ MB_maxsectors equ 80 ;4% of 1lcg sectors on each bub dev
MB”prages_s=2cC equ 8 ;4 of pages,pe: logical sector
MB_ragesize equ 18 :tubble device pagé size
MB_skew equ 12 iskew for page translation
14

146

;® MBP command masks and status aasks *

MB_ check equ Q0010000QEF ;cont busy? status check (20H)

MBT ad equ 00000001BR ;init the controller (0185

MB~ ut inhlblt equ 10000000B ;int 1nh1b;t/*eset mask (OHL

MB_chkInt_mask equ 10000000B ;mask_ testing if int set (80

YR~ pulti Pag2 equ Q0Q01000QB ;amulti-page node conmand 10H

MBTread_Zad equ 0C010010F ;multi- §age read command 1ZH

MB_reset_cad equ 01000000E s;reset the contrcller (uo)

MB_write“cmd equ 00010100E ;multi-page write command (144)

;® Miscellanecus equates *

blank equ 020H ;Ascii blank

conkuf_size equ 80 :Size for ipput buifer fcr ccnsole

cr equ OdH 1Ascii carriage return ccnt char

trye equ -1 sfor conditional assenblg

false equ nct true s fcr conditional asseafl

l¢ . equ 0OaH ;As¢ii line feed control ¢ ar

vectored_int equ false ;this ccntrols the asseaktl
ttTue=use hard interrupt to “cpu.
ifalse=polil int reg on MEB.

DEIBRMREERE R RBRARERRARRRRR B P RR R BR AR A RN R KRR KRR R RK R KK

H MAIN PROGRAM - LCRIVER *

RIRBRRRERERXBRARRB SRR BERABRBR AR BRER AR R ERKE R SRR RS RRR KRRR KR

CSEG
DIAG8B6M: call Set_U ;dc initialization

c
Test_loop:
cal

call Get’cgnt Addr .get tase address_fcr MBB-80

all Ini¥_con* :init the cont and devices
all Ge%_Test_Buffer ;get test pattern, fill buff
call Write Sector 'wrlte a sector to bubble
call Read _Sector .read a sector from bubtkle
call ChecK_Errors ;check errors in write/read

;advance to n8xt sector in device,see if last secto:r
inc curr_sec<or_tco -increment current sector *
Cap Curr_sector_no, ué gaxsectors ; last sector ?
jnz Tes+t_loop :If not test next sector

;was last sector,advance tc next bub dev on board
moy_ DX,offset msg_dcnebub ;addr of done_bub msg

call °rint String ;¥rite msg to conscle

cap curr_Bub_no,MB_ maxdevs :last bubble on board?

iz Done_pass ;if sc, done with a pass
sprepare to test next bubble device

inc curr_bub_no ;if nct, increment device #

mov curr_sectcr_no,0 ;set sector # back to zero

inc err tr sPtr tc next entry (dev)

jmp. Tes i 1go test next device
;:finished vlfh all devices on koard, grlnt summary
,prepare 0 run another pass if not stopped by user

Lcne_pass:

call Error Sunnary p:ént error sumnaig .

cal End Pis pass hcusekéeping
;see if any h'nq ke yed *n at the console

aov_ CL, Bdos censtat ;function ¢ for B8dces call

call Bdo .call Bdos *o _get ccns status

¢cmp AL, 01 :01=char keyed in, Oo-noth-nq

jz Done_test .somethzng eyed, user quics
suser uants Eo centinue

aov X,0f fset msg_ testzng ;addr of testing asg

call Print String -wr* e nsg to conscle

jmp Test_Toop keep testin

;suser wanted to quit the testzng

tcne test:

call Close U :do end of ryn housekeepin
mov CL, Bdﬁspreset functgon ¢ 2oz Bdcs caii d

147

T N T R I i asnadaieddcd

mov DL,O

iparaaseter to release meaory
call Bdos ;call Bdos to terminate prog

wapannkknkensanexx ond Of Main Program *ERRBIEXKREKREREER LK

Y IR I IR IS IR YT]

*t-&*t****##t#t#ttt#tt#ttttttttt#ttttttlt*tttttttttt**tttt*
» (CP/M~- 86% subroutine *
*##**t***#*#*t#t*t#tt*t*t*tt PARBREIBEFRRRREEER BB RE R KRR kR
'called from: Clcse Ug Get_Cont_Addr, Main,
Pr¢nt S rlng “Putchar.
Bdcs: '** entry to Bdos via software interrupt 224

H pars in - caller lcads regs as per req
) e para ou% - as sugp ed by Bdos returns
zng 224 ;808 softvare interrupt
Te

R L LT L B L bbb ttihhibidubaaihaddd b bt L EL L L L LT B
* CHECK BRROES subroutine *
2 st o e oMo ok 8 o o R o I R o O O AR AR A R R Rk
;called from: Main. .
Check_Errors: ;** gee if read what was written
i*% parm in - none
'** parm out - none

mov gattern ;pattern to accum for manipul
mov Cx B_btuflen ;counter for jocp thru Luffer

Test b tmov Bx,offset test_Lbuffer ;index into test buffer

es e:
-2¥ cmp EBXJ AL ;ccmpare buff to pattern
jz 00 :1f good, check next byte
push AX!pueh BX!push éx ;save att/buff addrscntr
call Etr Out it is rznt erroc
L]

cgll ? Error
Gcod_tesgzp P

inc BX ;increment index
logp Test_byte ;dec CIX and loop if not zero
ra

ssweveve

i!ttt***#t***tt#*tttt#*tt**t#**##t*#*t*t#t##i##*t*tt#t#*t#t
* CLOSE OP subroutin *
-:t**tt*t**#****ttttttt*tt*t#*t#*tt#tt#*t#ttt#*tt#t**tatt#t*
scalled from: Hain,
Clcse_Up: ;** reads_garbage from console,issues goodbye
'** parm in - none
:%% parm out - none
sclear sio gngut chagacte:s from the cons¢le buffer
nov CL B contu .znput console string funct
a0v ax offsét ccrs_buffi:area for_ ccens input
20V b;*e ptr (Bx],conbui sizejtell Bdos buff size

mov garaneter reg for Bdos
call Bdds .:ead he console
.lssue goodbye message
all ' Crlf klg €xtra line
2oy DX,0ffset msg_ enates ;addr of end test asg
call print _String ;Write msg to conscle
:‘ﬂ

etwe

148

ti

!

JEASRERAREAARBIXRRBEIERRAR SR NSRS A SRR ARRRE VSRS R SRS SRR SR R ERR KKK
i COMPUTE _PAGENO subroutine *
RRMARRRRERRKARRRRARRARTEE D BE XS U SRR AR XXX RS SRR AR SRR A BB R RN
;called from: Read_Sector, Write_Sector.
Cogpu*e_Pageno: ;**® computes 1st page # for a givVen sector
:*%® parm in - none, works on cirr_sectcr_no

Hrkes garn cut - ncne ugdates curr_page_nd
xor Ax,a ;set AX to zero
c¢mp AL,curr_secter_nc ;is it sector 0 ?,
jz= Stdore_page ;11 so, no trarslation
£or CX,CX sclear CX for counter

aov CLl,curr_sector_ac¢ ;cntr for translate loop
Add_skew:

add AX,MB_skew +# of pages between sectors
clc ;clear carr¥
sbb AX,MB_maxpages ;mod tc # © _pages
jae Dec_sEcter sjump if positive (CP=9Q)
add AX,¥B_maxpages ;vent neg, add back # pages
Lec_sector:)

loop Add_skew ;dec sector #, add skew again
Stcre_page:

aov curr_page_nc,AX ;store page number

ret

AR RE KRR ERRRR R XA PRRERER R KRR RN R xRN kKRB E R kKR kg

*

* CRLP subrcutine *

Y e e P R TR R P P R T R P T
;called from; Close_Up, Get_Cont_Addr,
+End_Pass,Init_Cont,Main,Print_S¥rirng,Set_Up.

if: +** Eends carriage return,line feed to cofis

;** para in - nche

s#% parm out - none

LIEYE TP T

(@]
"

moy_ AL,cP ;carriage return char
call pufchar iwrite it to console
mov_ AL,1lf sline feed char

ca}l Putchar ;write it to ccnsole
ret

AREREKEERE R ERRKEAEERBREEREERERE R R BRI KRR AR R R

=

* "END_EASS subrcutine *

EARMARKRRA KK BERKK AL KREREA S L EAERRAEXARRERRR AR KRR RBRER B RRE X KX
;called from: Main. .

nd_Pass: :*%* parforms end of pass housekeeping

sswevteswe

t3

;®*% parm in - none A
:** parm out - ncne, effects global vars
iconvart gass %# to Ascii and print arftér pass message

a0y L,pass_nc . ;Pass number tc accum
call Hex_To_1Ascii ;convert to Ascii .
mov BX,0ffSet msq_d rass;addr of pass # in msg
aov b*te ptr [Bx%,DH ;load high byte tc msg.
iac B ;buap to fext position in asg
aov b;te pr {BX],DL ;load low byte %o nsg
mcv. DX,offse+ msqg_dcnepass ;addr of done pass asg

call Priat_Stcing ;Write asg to conscle
. call Cclée ;Skip a line

sinc pass number and reset all variaples for new pass
inc pass_no ;add cne to pass nuaber
mov newpass_flag,! ;set new-pass flag cn
mov curc_tub no,6 ;raset to oubble device 0
mov curr_secTcr_rno,0 ;reset sector number to 0
mo: errptr,offset erriog ;reset addr of errer log
re

esae

149

JEBBIRARERBRRRRRERX PR XRKESERER AR BREE RS ISR R RSB BE R R BAER R R SRR KK i

i ERR_0OUT subkroutine * i
(MAARMAMEARARARRERA AT ERR KRR ARREEREEEERERERER BB PSR B A BRRERNRE RS
, ;called from: Check_Errors.
BErr_Out: i¥%* 1ssue ap errcr message to the ccnsole
;** parm in - EX addr in "buff cf byte error
:#% parm out - none, €ffects global vars

push 8x ! push BX ;save addr of error twice
ca newpass_flag,?! ;is this a new pass ?

jnz Prt_errc ;:if not, print errcr now
mov newpass_flag,0 ;turn flag o

mov_ DX,0ffs€t msqg_header ;load addr of header [
call Print_String ;print the header i
;put zeros int® all errcr ccunts in the log
aov CX,4B_maxdevs+1 ;coun+ for # of dév to loop
c1r 1 mov BX,of¥set errlog j;addr of error log
r_log:
-+09 nov g;te ptr [BX],0 ;clear log entry erzcr count

o b — e atn

inc ;bumap pFolliter tO n&xt entry
Frt loop Clr_log ;dec CX and locp if not zero
rt_erz:
- mov_ AL,curr_bub_no ;bub dev # to accus
call Hex_To_Xxscii ;convert to Ascii
aov msg_e_dev,DH smove in high b{te to ®sg ;
aov msg_e_dev+]1,CL ;move in lo¥ byte to asg :

;load page numbPer of error .

mov_"AL,byte ptr curr_page_no+1;hi byte cf page#

call Hex_To_Ascii sCOnVvert to Ascii

mov asg_e_TFage,LCH +bigh Eyte to as é@zg 1)

mov msd_e_page+1,DL ;low byte to nsg 1% 1)

mov_ AL,By¥e ptr curr_page_rno ;lo te cf pages

call Hex_To_Ascii 7CCAvVEL: to Ascii |

mov mnsg_e_Page+z,DH ;high byte to asg(dig_2)

mov msgq_e_page+3,DL ;low Lyte to asg(dig 2)
;compute and” 1cad byte oftset of error in page

pog BX ;cestore addr err Lkyte offset
addr_buff equ offset test_buffer ;fcr ccmputation

sub TBX,addrf_buff ;conPute err offset in buff
aoy_ AL,BL .. ;0ffset to AL for ccnversion
call Hex_To_Ascii ;convert to Ascii

a0ov msqg_e_Tyte,LH ;Bcve Jin high byte to msg
aov msg_e_byte$1,DL ;aove 1n low byte to asg
;1load patterT That was writted and what was read back
mov_ AL,pattern . ;load pattern just written
call Hex_To_Ascii ;Ccnverlt to AsCii
aov asg_e_vwrote,LH ;move i1n high byte to msg
mov RSg_e_wrote+1,DL ;move in 1léw byte to msg

pop BX ;Testore addr c¢f err offset
moy_ AL,{BX] . ;:load byte just read back
call Hex_To_ Ascii ;convert to Ascii

aov @msg_e_Tead,DH yacve in high bgte to asg
nov asdg_e_read+1,DL ;move in low byte to asg
mov_. DX, offset msg_err ;addr of total error asg
call Prin«_String sPrin*t the errcr message

-

-

FRBRAERAR KRR RRRRERREEERR P REERER SRR ERER R RN B R R SRR ERRR KRR

ERRCR_SUMMARY subroutine *
B AW A e 22 Aok o o o e o 2 s o R 3 R A ok e o R o e o
;called from: Main. .
Errcr_Summary: ;** outputs summary of errors cn each device
;*%* parm in - ncne
:*% parm out - none
10V bx,o fset msg_summary i;addr of suamary amsg
call Print_String ;write msg to c¢console
sstep thru errlIcg-cofivert to Ascii - grznt €Ir _counts
aov CX,MB_maxdevs+1 ;ccunt for loofp - ¢ of devs

» %%

IR IRYR Y]

150

acy Bx.oggset errlog ;addr oé error log
.1 nov DI,offset msg_counts ;addr of asg Sum counts
r+_loop:

- pmov AL,[BX& sget count froms errcr log
push BX'push CX!gush bl s save addr,counter,index
call Hex_To_Ascii ;convert to Ascii
pop DI! pog cX! og BX ;rest index,counter,addr
mov byte ptr (DIJ,DH ;l0ad high byfe tc
inc D ;bump to next pos in asg

aov b{te ptr {DI),DL ;load low b{te to msg

inc D sbump to next pos in msg

aov b{te ptr [DI],blagk sAscii blank t¢ as

inc D ;bump to next pos 1in msg

inc BX sincrement buff addr to next

loop Brt_loop sdec CX and loop 1f not zero
2oy X,0ffse+t msg_ccunts ;addr of asg sua counts
ca%l Print_String sWwrite msg to conscle

ce

eswewe

KPRk pgkkERRERR X EAREREE XA B EEEREEEERRXEXEERE R XY BRERBRR K ER

* GET CCNT ACDR subroutine *
RYPPRRREREXRRRRREE AT ERKETRRREERREBE AR EEE SRR SRR NRERRR R KR

-te

;called from: Main.
Get_Cont_Addr: ;®* gets base segment address for the MBB-80

;** ccntreller from the user at the console.
;** parm in - none
;** parm ocut - ncne, updates MB_contbase

mov bx,offset.nsg_getad&t ;addr of Jet cont asg

call Prlgg String ;urgte asg to conscle

:get base add¥ess kéyed in by the user]
mov CL,Bdos_conbuf ;input console string funcs
mov BX,offset ccos_buff ;area for coans iaput

. mov b;%e ptr(BX],contuf_size ;tell Bdos size
aov_ DX,BX ;load param for Bdos call
call Bdos ;read from console
call Crlsf ;Ski line after input

. 1 g a
;make sur2 only four digits keyed in
nov BX,o0ffset ccns_buff+1 ;byte 1 tells how many
cmp byte ptr[BX],4 ;See 1f exactly fcur read
jne Errogr_input :if nct 4, error
;mak2 sure all fcur digits are valid hex
mov BX,offset ccns_buff+2 ;byte 2 starts_dacta

xor AX,AX sused for Ascii tatle index
£ mov_ CX,4 ;oumber of digits to check
b o Check_valigd: ..)
mov AL.SBX ;move digit tc AL for chking
cmp AL,0308 ;Check to see if tco low
b Error_input) .
cmp AL,O048H scheck to see if too high
ja Prror_input L)
cap AL,039H schk mid-invalid (3aH-40#H)
jbe valid hex
cmp AL,O47TH
¢ ae Vai;d_bex L. .
. ..Jjmps Error_input +it is ia the middle - error
5. 4 Vvalid_hex: .
- sub a%,0304 ;-30H t0 get table index
] push BX :save buffer addr
oo aov BX,AX . :AX 1s_index to tatle
4 aov AL,Ascii_tablefBX) ;table 1lock up
s : pop BX ;restore buffer addr
i nov b;te ptr(BX],AL ;:store hex back in buffer

‘ inc B . ;next digit

i loop Chack_valid . .+90 check it]

sconvert 4 valid hex dzgzts to a binary nuamker in aAX
nov 3X,0ffset ccns_Euffe+2 ibyte 2 s*arts data
mov AH,[3X] ;get Iirst digit

i 151

B

aov CL,4 sshift it to high nibble

shl AH,CL
inc BX' sincrement index
Qr AH,[BX] .2nd dig orted intc low nibb
inc Bx’ .1nc:enent lndex
aov AL aax] ;get third 4i .
aov :shift it to lqh nibble
hl AL CL
nc BX .1nctenent index

or AL 1 4th dig orted into low nibb
;store cont tol er haee ad&ress that wvas built in AX
aov MB _contbase
jmps Ge¥_cont re{ : 9o return
-error in ifiput, " issue uessage, retry
Ertor lnput-

mov offse+ msqg_errinp ;addr of error message

call Pr‘nt _String -vrlte asg to conscle

call Crlf ;skip a line

jmps Get_Cont_Addr i1 go ask again
Get_conz_ret:

re

'***t*t*tl*t**#t********#********‘***##***t#***i***#‘t**#'

GET TEST BUFPER subrcutin *
********#ttt#t***!*#t*!tttttx#t##*t#*#t**t*t***#ttttttttt.
:called frcm: Main.
Get_Test_Buffer:;** increments pattern and loads test buffar
;** pirm in - none
:** parm out - none, effects global vars

% *

inc attern .add one (1) to pattern

ao0v L,pattern attern to accum_for nanlgul
nmov cx, B_burlen Qop counter - size of

aov BX of*set test _ buffer :set index into buffer
nov k3,AL i, load’a byte

inc X sbuap 1nd

loop PFill sdac CX, loop if not zero

Tet

t#*t*t#t*#***t*t**#*******#t#*t:***t#*ttt*****st#t#tt**tt#
HEX TO_ASCII _subgroutine
tt*t*tt#ﬂ#t*lt*!lttttt****t#t*tt*tl****#t*#*ttttttttt
. ;called from: End_Pass,Err_Out,Error_sSuamary.
x_To_Ascii: ;** converts a heX numfer To its hex Ascii
'** para in - AL has hex byte to ccnvert
parm cut - DX contains h;slo Asc11 bytes
sconvart 1ow nibble cf AL to Ascii ne

LI eweosesvee.
l&i

»

mov A{,AL ;save hex gor gz zibble

and AL,0€fH iclear h1 h 4 bits lo aibb

add AL,90H -handles -9 (908+QOH=13OH)

daa 'dec1nal adiju

adc AL,uOH ;handle a-£ (u1a-aea Ascii)

daa dec;nal adju

aov DL :1cv nibble Asc.l fcr ret
sconvart hlgh nibble cf AL to Ascii hex digi<

mov AL, AH ;acve to AL for dda ops

aov CL,4 ;iset count f£or shr

shr AL,CL .sh.f* hi nlbble tc _lo nibble

add AL,90H ;handles 0-9 (90&00088130)

daa dec;nal ada

adc AL,40H .handle a-£ (u1a-u6u Ascii)

daa sdecisal adjust

mo: DH,AL ,hzgn aibbl2 Ascii for ret

ra

152

(EABRBREPRRESREASRE AP RBANRS S SR NI RE S RAE S SRR SRS AR SRR BSE RS
X INIT CONT subroutine *
JARRRRRRRNR X ESREBARRTRE R IR FEE SRV RERF S AR AN R AR RS S ARRERER R RS
. ;callad from: Main.)
Init_Cont: :** inits +the MBE controller and each device
:®* para in - ncne

ik ga:l out - none) . .
nov X¢0 fset,lsg_inltbggzn ;bog;n init_asg addr
call print_String swrite asg to _conscle

tdnitialize ga§e sizé and mincr lodop size
maov AX,dB contbase ;address of coatroller base
mov ES,AX :load ES to address buybble
nov AX,¥B_maxpages ;pages per bubble device
mov ES:P_ToopsizZe_lo,AL" ;loopsize low Etyte
aov ES:P"loopsize_hi,AH ;loopsize hi byte
. mov ES:P pages;ze_re%,ua pagesize; page size reg
;issue reset Toamand to thke céntiocller
nov AL,MB_reset_cmd ;reset mask byte
. .mov_ ES:P_ZTan _rég,AL s 1Ssue reset’ coammand
;initialize each Lktiubkle device .
mov CX,MB_maxdevs¢l ;count for loop-# cf devices
mov AL,0 ;device # to initialize
Fcr_each: .
mov ES:P_select_tubdev,AL ;select each device
mov ES:P_cmnd re€g,MB_init_cmd ;init this device
push Axggnsh CXtpush ES ;s3ave bubble #,ccunter,ES
call wai :walt for controller tc work
pop BES! pop CX! pop AX ;restore ES,cntr,bubble #
inc AL ;next device nuaber
. loop For_each . :dec CIX, loog if not zero
sissue msgs Indicating jnit done and test in progress
noy xiggfset,nsg_znltend ;init done messagé addr

call Pr String s¥rite msg to conscle

call Crlf ;skip an éxtra line

mov_ DX,offset msg_testxgg stesting message addr
ca%l Print_String ;write asg to coascle

re

(RIRBRKERRAKERRRRAREAEEERR SRR BB AREE RRARR KRR R R RERE R REERERR X R R
1 LOG _ERROR subroutine *
JEIRARKERRRREERRERRXTARRBRRARRARBRBR AR AREXRR RR KRR R BRERXEER R RE
scalled fros: Check_Errors, .
Lcg_Error: ;¥* 1¢cg the error £0r use in pass printout
:+*% pafm in - ncne
;** parm out - ncne, effects global vars
mov BX,errptr ;addr of errof log to BX
inc by%e r [BX] ;add cne to error cgunt
nz done_lo +1f not overflow, all done
ec byte~ptf (BX] iinc tco big, reduce to max

dcne_log:
- qret

BERARFRRRRRRARRRRE XXRXAR SRR ERBR AR R P IRRXRRERFRRRBERRRERRR R KK
PRINT STRING subroutine *

BRRARBURRRERRRRREARRREEEAREBEERBRRFEERRRR AR SRR RRBR ERRE R RN

scalled fror: Close UE' End_Pass, Err_oOut,
gr;or_gu:ngry, Get_Cont_Addr, fnzt_tont,
ain e .

% prints Eu%fer addressed until '$* hit

*% parm in - address of buffer in DX

*% para cut - ncne)

moy_ &L,B os_pstzing ;functicn # for Bdcs call

LI T TTYY 1Y
% & W

Print_string:

call Bdos ;cail Bdos and print
c2%1 crlf sskip a line

153

“ J!‘..\m%ﬂt.\k L e I LSV

****itt**#ﬁ*‘**tt*‘##*‘t‘ tt#‘.‘*“ RXBERSREEEREEE ISR R RE % t‘

PUTCHAR sutroutin
-*tttt#t#ttﬂ#tt*tatt*tttttttttt‘t‘t‘#tt*ttttttt#tt*#t#‘#tt#!

;called from: Crlf.
Butchar: Hednd vr‘teinchatacter from AL toc console

ten para - output char in Al

is% parm out - noge
anov &L,B os_conout unction# for Bdos call
ROY DL, .load char to Bdos _rag
call Bdos ;call Bdos and send

ret

tt#t*#*t##**t*tt#*#t*tt#tt#*#*#*ttt##ttt****#t#tt**tt*#tt
H READ_SECTOE subroutipe *
.*t*t**tt**##t*t*ttti*#*tt*tttt*t‘#*tl*#ttttttt##tt*#.#*t*tt
.called from: Main.
Read_sSector: {#%x Teads sector intc test buffer from bubble
jex parm in - nocne
-** parm out - none, effects global vars
call ute_Pageno ;compute 1st page# of sector
-establlsh a dreSsability to c¢cntroller
mov AX,MB_contbase .address of controller Lase
aov_ ES,AX” ;load ES to address bubble
;set uulté age noge " Ltd 1ti a
aov cand_ce aulti @ ;multipage mode
:load first pZge Suafde%:? trambeer ° pag
mov AX,Cufr_pages_pno ;current page nunber testzng
mov ES:P_pagesel_lo,AL ;page Select lo byte
mov PBS:P”pagesel_hi,AH ; age select hi Eyte

;set number of pages io rans = pages/sector
aov ES:P_pagécnt_leg, uB ages sec -0 pages to xfer
mov ES:P_pagecnt_ h; i"kyte of is zero
;set up buffef td receive data
nov Cx,ﬂB buflen scount for logg-buffer size
ROV oftget test buffer :set index ipto buffer
;select b 6 le device anid issue read command

mov AL curr bub_no _;current bubble # testing
mov ES:P_select_Lubdev,AL ;select current dev #
mov ES: P cmnd_r<€q, MB_ réad cmd :read from FIFO
;wait for interrupf from Contrcller
Read_int:

IF vectored_int
cap 1n*er:ugt flag,0 ;will be set hy int handler
jz Read_1in i1f zero, keep checking
mov inteFrupt_£flag,0 ;reset lnterrupt flag

ENDIF ;vectored_int

IF not vactored int
nov AL ES int flag :get jnterrupt status
and cﬁklnt k shas interrupt keen set?
Z Reaa 1n ,1£ not, keep checking
ENDIP :noOt vectored_int
scead from MBB FIFQ tuffer into test buffer

mov AL,3S:P_rdata ~F€g ;read a byte intc accua
nov EBX],AL :Joad accua ipnto kuffer

inc X] iincrement index

loop Read_int sdec CX, loop if nct zero
push ES isave B§

call Wait jwalt for controller to stop
pop ES srestore ES

mov ES:P_cand_reqg,MB_int_inhibit ;clear cont int

ret

154

s R L . -

ST T TR TN

SRARBARBAEEXERRERERR AERRRA SR EERNX SR SR RREEE SRR BEF B R BB R EEE 5k W

o SET _UP suakroutine *
IRABERERRREARBEXB AR ARAEER ISR ERR AR B A RRREER RS ER RS S ESRRREE R XN
;called from: Main. . .
Set_Up: +** inits variables and issues signon asg
;s*%* pars in - none
;** parm cut - none, effects global vars
cal érif ;skip an extra line
cal Tlf .+Skip an extra line
mov_ DX,of fset msg_signon ;signon message address
call Prlng str;ng swrite nsg to conscla
mov_ DX,of¥set mSg_versiQn ;vefsion asg address
call Print_Strzng ;¥Iite asg to consale
. .call Crlf . ;skip an éxtra line
;initjialize all variakles and flags .
mov newpass_flag,1 ;set flag indicating new pass
mov curr_bub no.é scurrent bubble #$ ¢ 0O
mov curr_sec¥or_no,0 ;current sectcr # to 0
mov pattern,? ;initial test pattern is 1
aov ass _no,1 ;inztla ass is 1
ROV rrp¥fr,0ffset err cg ;addr of error log
sload MB_interrupt vectcr address in CBE/M low deaory
push DS i1save this pgm's DS
mov AX,0 ;lovest memoly
rov DS,AX ;aake it addréessable
aov HB_;nt_segnent,Cﬁ ;int vector CS is pgm CS
aov MB"int"cfiset,cffset Trap Handletitrag handlr
EOP DS ;restore this pgn s D
;set up 8259a PIC tc recognize interrupt from MBB-80
mov AL, MB_int_mask ;mask to enable MB interrupt
ogt PICp1,AL :send mask to 8259%a - OKC1
sti
rat

AARRRRRERRRARRRERERRAREERIERERERBE K FBRRRBEBEEREE S RRERARR RN Y
* TRAP HANDLER subroutine *
RARARRRBARRARABERARDRESEEARR LT C R A RS RRRABRXEEBERRRRERRRRE BR

;called from: Vectored to from CP/M interrupt
Trap_Handler: ;** sets thé interrupt flag sesaphcre to one

+** parm in ~ ncne

ik garn out - none)
mov {In%eotrupt_flag,1 ;set the interrupt flag on
iret ;return froam interrupt

0 o ol e e seale 0 2 20 AR e 3 el el 2 kol S SR o 3 o KR o A A e e 2 ek 20 K k3R e KRR 3k K R

=
* WAIT subroutine *
ARRERRRARRRRRARRR AL ERARRRARREE PR AR AERNKERREFERERRIRR SRRKE LR
scalled from: Init_Cont, Read_Sectcr,
. H Write_Sector.
Waie: +** checks status of MBB contrcller for busy
;+** keeps checking (wait) until not busy
;** para in - none
;™% parm Qu*t - none
mov AX,¥B_contbase ;address of controller base
mov ES,AX :load ES to address bubkle
See_zero:
mov AL,ES:P_status_reg ;get status register
and AL,MB_blsy_check ;is it all zeros ?

IR ITYY Y

jz See_z€ro ;1f so,keep checking for one
Ccnt_busy:

mov AL,ES:P_status_reg ;get status register

and AL,MB_busy_checCk ;seé if busy, and to nmask

jg% Cont_TBusy 1t busy, check again

155

i

S
vm~wn-pw—-n!-!!!a!!!!l!!!!llllllllllllllllullllllllllllll!!|!!

;. PABERERRREBERE R R RE BB P R RE ttt‘ttt‘#"?t'tttiltltt'l!.t‘”‘t’
i WRITE SECTOR subroutine =
: PR R LRI R LR R L 3" ‘ttlt"f‘#‘ttﬁ“t'#t!"tt‘tlttttlttt
. ;called frop: Main.
Write_Sector: ** yrites sector frca test_buffer to bubble
;%% parm in - none
ol garn cut - ncne
cal dompute_ra €po ;compute 1st page# of sector
sestablish addreSsability ¢9Q _ccatrolle:r
mov AX,MB_contbase " ;address of controller base

aov_ ES,AX ;load BS to address buktble
;set nultlga e mode .]
nov, ES:P_cand_reqg,MB_aulti_page ;aultipage acde

;load first page nimktér f3or trafsfer)
mov AX,cufr_page_pno ;current page nuaber testing
mov ES:P_paJesél_lo,AL ;page select lo Lyte
mov PFS:P_ragesel_hi,AH ;page select hi Lyte

sset number of fpadges To transfef = pages/sector
aov ES:P_pagecnt_lo,aB_gaqes sec ; # gages to xfer !
mov ES:PTpagecnt_hi,0 Thi by¥e of % is zero ‘

iset up buffef to _send da-<a)
mov CX,MB_buflen-1 :ccunt for loop-buffer size
ROV baﬁsofiset test_buffer ;set index into buffer

u

1select le device antid issue write cad .
mov AL,curr_bub_no _;current bubble # testing
mov BES:P select”ktubdev,AL ;select current dev %
aov AL.EBX 'load,flrst byte _
maov ES:P_w ata_req,ai ;Wwrite a byte to FIFO buff
inc BX ;increment index

€

.mov ES:P_cand_reqg,MB_write_cmd ;write FIPO buff
. swait for intérrupt fiom Contrcller

Write_int:

IF vectored_int .)
cnp interrupt_flag,0 ;will be set ty int handler
jz Write_int ;1f zero, keep Checking
mov interTupt_flag,0 ;reset interrupt flag

ENDIF ;vectored”int

IP not vectored_int

mov AL,ES:P_int_flag ;get ianterrupt status

and ALzuB clikin®¥_masgk ; has interrupt been set?
Zz Write Int . :+1f not, keep checking

ENDIF ;nof vec*tored_int:
swrite into MBB PIFO tuffer from test buffer

mov AL,[BX ;byte from buffer to accua

mov ES:P_wdata_reg,Al ;write a byte to FIFO buff

inc BX, ;increment index

loop Nrite_int ;dec CX, loop if nct zero
push ES, isave S

call Wait ;wait for controller to stop
pop ES ;T€store ES

moy BES:P_cmnd_reg,MB_int_inhibit ;clear coant int
rat

gtat*#:t*tntt**#tt##t**t*tt**tattt**t##t*t**ttttt#ttat**t*t#
i * - DATA SEGMENT AREA *
IRARARERRBARERBRERARRKARREIRERI IR AR BB IERRRKERARER SRR R R RNK R KK
{ ’ DSEG
org 0100d ;ieave room for base page
IH# coeccmccemcamaceew=Jariableg-eemmem=——=- e cecmccccan—— L]
Rscii_+able db (QO0H,01H,02H,03H4,04H,058,064,074,08H,09H
; - b 7 tfor’AscliT3aH tO 40f - Invalid ’
i db 0O0aH,0bH,0cH,0dH,JdeH,0fH

156

»
*

msqg_

asg_

———
eevsws

cons_buff
curyr_bub_no
Curr_gags_no
curr_sectdr_no
errlcg
erIptl
in*erru
MB_cont
nevpass_
pass_no
attérn
est_tuffer

€g_ccunts

asq_donepass
esqg_d_

msg_endtest

msg_<err
BSqg_e_dev

Bsg_e_page
8sg_e_byte
msg_e_wrote
asg_e_read
msg_errinp
msq_getaddr

nsq_ 1n1tbe
msg_ipiten
e msc_signron

mSg_summary
msg_testing

X nsq_vers;on

o) 0000 14 13 62 a0 625 00 (0020 0 2 (00 §25 00 e £ f e O 2 S Dl FUS L0 QU Qo QU Q1T Qg0 Y
[oa-—1ogeoge t-Togdofs [ogedogooggogdsgdegogogegogegofegegegedegdonogegdeogeyeytsdoy-g.gogod-yg-gdoy

?onbuf_sizeb&gg a ggslggns stsingsig ut

1 ‘bubble pa testin

1 :guggi E g secto: $ gestlng

¥MB_maxdevs+1 ;table for dev e:rgr count

1 ;pointet to errlog -"index

0 sint - senag ore,from MNBB

0000H : base se lent ad for MBB-80

1 s1flag fo 1ndicat1ng new pass

1 ;gass nulber

1 ;:test pattern

MB_buflen ;buffer to hold test data

ata ar2a for console messages ——=—====-=
dat £ 1 *

}iga_laxdevs¢1)*3)

' Done with a bubble.3'
5Done with PASs °

g

'%(Jser terllnate testing...!
'return;ng to CP/M! §!?

$
ERROR: nct exactly 4 dlglts entered,"*

T invalzd hex dig zts

lf Ke‘ 4 g ment base addr?
s tor BB-BO co troll cr,

§t € in hex (4 dzglts, tﬁen CR only)!
b
el

L Page_ Byte Wrote Read$'’
f,'Initializing the contrcller...S'
'COntroller is zni ialized.$?

"* MBE-80 CP/M- 86 DIAGNOSTIC IEST **S‘
fTotal errcrs for each device (-7):
*Testing...Hit any char (& CR!)

'tc stcp after this pass.i

'Hultl Page uode Version 1.0',cr,1f

) = e ea) .4QN.N-N.£'-N-
-

l‘".'n mor

]
xg
(o]
[4
S
u
=
u

ST
m-r-r

vectored int

' Vectored Interruptss$!®
F ;vectored_int
ct vectcred”int ,

' Pclled Inte::uptsS'

DIg snot vectored in

GENCED to £fill last address

ARRRBRBRERRRRRRRR cnd Of variables APRRAERERSERRARRREARR KRR

157

—

s e s cqp

et

sttt*tt*tttt*t#ttttttttltt#lttt#ttt*ttttttt‘t"ttltt#.tt‘ttt
e BB-80 CONTROLLER AND PORTS *
;t#t*tt*#ttt*#t#*tt*t*ttt*tt#tnttt*tttﬁ*tlt#t##tt‘*tt#t*ttt*
b_pagesel 1 th i1s b t¢ for page select, (O
P:Eagesel hg rb 1 ;s Y fts fog gage seleét,(%)
P_Cpnd_reg tb 1 ;co-nand register, (2
PT :data _ragqg tb 1 :Te data register, (3L
PTwdata"req rb 1 ('3 4 te data tegzster)
PTsta*tusS_régq rb 1 ;status register,
P_cagecnt_10 th 1 ;1s byte for page counter, (6
P_Eagecnt hi rb 1 ;@S 2 bits for fage cater, (7
P”lccpsize_lo rb 1 ;:1s byte for ainor lcop sz, (8
P”lecopsize”hi rb 1 788 2 bits for ain lcop sz, (9
v 1 iinternal use (page Fos (k,B
P_ragesize_reg tb 1 ;Eage size regzs er, f
Tw 1 ;17T "use only,

P_select bubdev rb 1 ;tWo uses: sel bubble dev
P int ¢ ag g P_select bubdev : %nt errupt fla
;X*#EMExAx ond of CofitrolleF and Port definitions *** " -
(RAAAARERERESEARRARRRSUEERB RSN RSB RBRRERRREESRRE B RRE KB RRE 50
> DUMMY CATA SECTION *
TAIRBARRRAR R EBARERERRERRAR ARKESRE R R SRR IR X RKRARR R B ARG EEEE R R E

DSEG 0 ;absolute low memory

orqg 0 .start CP/M interrupt vectors

tc int type for MBB
TV 2*(58 int igsdr YP 8

¥4B_int_offset rvw cf int vector cffset
MB_int_segment rw 1 ;addr of int vector segment

‘****‘**t*#*t*#**#**#**‘##‘#*.“*#*‘*l#****#***#C**#**‘***

»
. End cof P:ogran DIA
t*tt***t#t*****tt*t***#*##*#

END

e1:17.]
'.###*‘**t‘#***‘t#***‘#*‘**‘

LI 1Y T1 Y

158

|
£

AEEENDIX D
PROGRAN LISTING OF MBSOPHT.A86

FILENAMES: Pascal = MB.MESOFMT.TEXT
cP/M = MBS8OFMT.CHMD

RPN RRERRRREREREREEERRBREE N E R R Rk bk kg w ok k sk ik Bk kkkkE xk

8086 FORMAT PROGRAM FOR PC/M MBB-80 BUBBLE MEMCRIES *
SRR S PP DL R P PR D T P Bt e g e S L L

CCNFIGURATION: .
HOST - Intel 86/12A SBC, 20 address lines, MDS ${sten,
Dgiahpuﬁ on 86/12& converting to low 8 bits
a igh.
MBB - Interrugts disakled bg disconnecting tke inter-
rupt jumper on the MBB board. Multi-page mode.

This program writes a formatti code (QeS5H) into ever
kEyte gn %hg tubble devices. Thgg ccde {s fo% standard Y
IP8M compatilble disks.

The MBB-80 controller tase address is read into variable
'MB contbase'. MBB-80 address select Exns must gcrrespond
to This address. This prcqram uses mehory mapped I/O0
thrcugh <¢he base address.

AP RENREERRE R REEREERPREEERESRREREE R R RERE KX B2 R R KRR R RRR)RR

Jeffrex Neufeld and Michael Hicklin cs-03 Thesis »
W R A A A A R A 3 R AR Rk R R R R

U000 0000000090000 010090%IN0G00IN0DINIticieliersoivnivsvsas

:* Bdos functicn numbers fcr calls *

dcs_conbuf equ 10 ;conscle string input function #
Bdcs_conout equ 2 ;console output char function ¢
Bdcs_pstring equ 9 ;grlnt string until '$*' function #
Bdcs_reset equ 0 ;CP/M~86 resét to CCP function ¢
;* MBE characteristics *

MB_tuflen equ 144 stuffer length for sector
MB”maxdevs aqu 7 sbubble devices are #0-#7 .
MB_maxpages equ 641 +% of pages on each bubble device
MB_pmaxsectors =qu 80 ;# of log sectors on each bub dev
MB_rages_sec equ 8 % Oof pages per logical sector
MET pagesIize equ 18 sbubble device page 51z§

MB”skew equ 12 sskew for page translaticn

:* MBR command masks and status masks *

MB_busy_check aqu Q0100000B ;cont busy? status check (20H)
METinitZcmd . equ 00Q0000Q01B ;init the controller (018%

MB” irt_Inhibit equ 10000000B ;int innibi<+/reset mask (30H
MB_chkIn+t_mask =qu 10000000B ;mask tssting if int set (80
MB-msulti_page edqu 0001Q0000E ;multi-page dode comamand (10d
MB read_cmd 2qu 00010010E smulti-page read command (12H
4B rese¥_cad equ 01000000B ;reset thé controllar (40QH)
MB_write_cmd aqu 00010100R ;multi-page write command (14H)
{* Miscellanecus equates * . .
ccnbuf_size eju 49 ;Size of console input Lturifer

cr 2qu 04H ;Ascii carriage return ccnt char
forma+_pattarn equ QeS5H sforaat gattern for every byt2

1f 2qu Oad +Ascil line feed control char

159

BEARKBREE LR EREEERAEERREREREREREE RS R PSSR SRE SR EER R R BRE R RER R R

Tx
5‘ MAIN PROGRAM - CRIVER »
(RABAMERERRARREARRESRARBRE SRS RERE R SRR EER AR RRE S FRR S SRR SR
’ CSEG
ABEOPMT: call Set_Up - ;40 initialization
ca)® Get_ Ccnt_Addr sget address of MBB-80 Lase
cal. Ini¥_Con?¥ ;init the cont and devices
Fcrmat_loop: .]
call Write_Sector ;¥rite a sector to bubble

;advance to néxt sector in device,see 1f last sector
inc curr_secter_no :increment current sector #
cmp curr-_sector_no,ME_maxsectors ;last sector ?
jnz Format_ ocg s1f not, format next sector

;was last se¢tOr,advancge tg nex%_oub dev on board
moy_ DX,offset asg_donedev ;addr of done_ dev asg
call Print_sString :¥Lite msg to conscle
cap curr_bBub_no,¥B_maxdevs ;last bubble on board?

jz Dona_forwat ;1f sc, done with formatting
:prepare to Eormat next Eghble device .
inc curr_bub_no ;if nct, increment device ¢
mov curr_sector_no,0 ;set sector # bgck,to zZero
Porm3t_loop :g¢ fcrmat next device

jm
Dcne_fornagz)
call Close_0Up ;do end of run housekeeping
mov CL,Bd6s_resc:t ;function # for Bdcs call
mov L,0 iparaaeter to release aeaory
call Bdos ;call Bdos to terairnate prog

kphgkphgkhhknkxxenkx 2,.d of Main Progranm e o gk ek o ot ok g K R 2 kR 3 R

BRAARRENRRRER AR R AR RAERBLEBREF BRI EABRERKERER SRR ERRE RRER R RS
BDOS CP/H-SGL subroutine *

SARRRERRRREIERRAXERRBERARPAR AR BRAREARKERER R BR DR SR RE KL XL RE
;called fros: Get_Cont_Addr, Main,
H grxnt StTing, Putchar.

Bdcs: ;®® on+try t¢ Bdos viIa sofftwvare interrupt 224

;** para in - caller loads regs as per req

) 1** para out - as sugplzed by Bdos returns

int 224 ;8086 software interrupt

re

®esVeBegssr 0 ne
* % %

RAFRNRRRRRRERANERSEARBABERBERRBRBREPEERRRB KR ERE R RER RRER R RN
* CLOSE_UP subroutine *
AARRRRRARRRRREXRE ARG TRAER S RRRE PR AR X EREE X RE R R ERR R RYR R RRA RN
;called from: Main.
Clcse_Up: 1®*% jssues gocodbye
;*% para in - ncne
] }*%* parm out - none
sissue_goodbye message
call 'csléf

YT ITYY T

=1lf iSKkip extra line
mov. DX, offset msqg_end”crpat ;addr done format asg
call pr-at_sString ;Write msg to conscle

et

LYY Y

104

s 1

(RARRREERE R AERBERRRIERSEERAAA SN ERR A RSE B ARSI EBES SRS ABSEREE RS S
M COMPUTE PAGENO subroutine »
R EL LR L D e L e e DL D L T DL g St L
;called froa: Write_Sector. .
Ccspu*e_Pag=2no: ;** coaputes 1st page # for a given sector
;** parm in - none, WOoIks On CUrr_sector_no

taw para out - ncné, u dates curr_page_nd
xor Ax,A ise li to zero
cap AL,curr_sectcr_nd ;is it sector 0 ?.
jz Store_page ;1{ sc, no translation
xor CX,CX iclear CY for counter

’
ov CL,curr_secter_nc ;cntr for translate loop

dd AX,MB_skew ;# of pages between sectors
cle ;clear carr
sbo AX,MB_maxpages ;mod to # o ,gages
jae Dec_sé&ctor ;juap 1f positive (CP=0)
add AX,%B_maxpages ;went neg, add back # fpages
Lec_sector:)
loop Add_skew ;dec sector ¢, add skew again
Stcre_page:
no; curr_page_no,AX ;store page nuamber
re

b
Add_skew:
3

H
IRAARAAERBRARBAERARRABRBARIIFXR AR IKABSRRRSREREREE S BHR K REE KRR
ch CRLP subrcutine *
FRANKBARUARARREIEXIRAARBARPARAXRX BRI AR R B RRKERE S ARG B RRD S KR
;called frorx: Clcse_Up, Get_Cont_Addr,
: Init_Cont, Maip, Priat_sStTing, Set_Up.
Crlf: %% sends cirriage return,lin€ feed to colis

:** parm in ~ ncne
s*% parm out - none

mov_ AL,cE icarriage return char
call pPufchar ;¥rite 1t to console
sov_ AL,1lf :line feed char

call 2ufchar iwrite it to console
ret

2 g ok sbeale ot 2B e 50 e 396 e ofe ke e e ok ol ofe o o o e R 20 2R e ol K AR ok A R e R e ok o o K Ak ok e ka3 Kk

GET_CONT _ADDR subroutine .
ARRARR AKX A RRAAER AT XX EARR ISR AR BXRXASABREEE AR RRB X ERRR R RER R E X
1called from: Main.
t_Cont_Addr: ;%% gets base seqmaent address for the MBB-80
:*% controller from the user at the console.
;®*%® parm in - none
1** parm cut - nong¢, updates MEBE_coOntbase
aov_ Dx,offset msg_getaddr ;addr of Jet cont msg
call Print_String ;write msg to console
;get base addTess kéyed in by the user)
maov CL,Bdcs_contuf ;input console string funcs#

G) weeservews
[R B

P

nov szoffset cens_buff ;area for cons ifput

nov b{-e ptr [BX),Ccnbuf_size ;tell Bdcs size

mov_DX,BX ;1load para for Bdos call

call Bdos ;read from console |

call Crlf ;skzg a line after igpput
;make sure o%%; four diglti eyed in .

20V X,o et cons_Euffel (byte 1 telis how many

- cmp byte ptr(BX],4” ;see if exactly fcur read
Ene Brror_input . 3if nct 4, error
! smake sur2 all four digits are valid _ hex
a0v BX,offset ccns_buffe+2 ;byte 2 starts_data

xor AX,AX sused for Ascii takle index
mov_ CX,u4 ;nunkter of digits to check

Check_valid: o, .
ROV AL,BBXJ ;aove digit to AL for chking
cap AL,030 scheck to see if tco low

161

Svsvwevsee

jb Erzor_input . .
cmp AL,O04%H :check to see if tco high
ja Error_input L)
¢mp AL,039 :chk mid-invalid (3aH~40H)
ibe valid hex
¢mp AL,Q47TH
ae Vaild_gex L)
..Japs Error_input sit is in the middle - error
vVvalid_hex: .
Sub AX,030H :=30HB to get table index
push ;save buffer addr

BX
aov BX,AX | :AX i1s index to tatle
nov AL.Asc11_tahle[Bx§ stable logk ap
p BX irestore buffer addr
mov b{te prr{BX],AL ;store hex back in buffer
iac B . snext digit
loop Check_valid . .s90 check it]
;convert 4 vaIid hex d;glis to a binary nuskter in AX
mov BX,of fs=2t ccns_Euff+2 ;byte 2 starts data
nov AH,QBX] iget fi:st digit .
CL +Shift 1t to high rnibble

a0y .
shl AH,CL] .

inc BX ;increment index .
or AH,(BX] ;2nd dig orted into low aibb
inc BX sincremént index

nov AL,RBX] ;get third dlg;t .

mov CL, :Shift it to high nibble

shl AL,CL) .

inc BX ;&2c:enent index

or AL,[BX ¢
;store conttoller base address that was built in AX
mov MB_con‘base, AX
jmps Gef_cont_;e{ + go return
;error in input, issue mesSage, retry
Error_input: .
mov_ DX,offset msg_errinp éaddr of error message

h dig or'ed int¢c low nibb
a

call Print_sString ;WCite msg to conscle

call Crlf :skip a line

japs Get_Cont_Addr : 9o ask again
Get_cont_ret:

ra

BRRRRRRRE ERRFRRRERERERRR SRR ERRE R KRG R RRE KRR RE R R ERE KRR Rk
*

INIT CONT subroutine
BRARERARRRRFIRAKEBTRRRAR SRRAERBEE R REXRRERRRX KRR BB RER R RRE KXY
. scalled from: Main. ,
Init_cCont: ;** inits the MBE controller and each device

:** parm in - none

. ;®* para out - none
sinitialize gage size and ngg
X,¥B_co T

-
]
*

T loog size

c
mov A ntbase ;a €éss oL controller base
nov fi,ag ;load ES tobaggiesg bubble
mov max €s_ ;pages per bu e device
nov ES?P_Ioopggge_lgz 19%1c8psize low byte
mov ES:P"loopsize_hi,AH ;loopsize hi byte

. mov ES:P_pagesxze_:eg,HB_pageszze;page size reg
:issue reset Command t0 the ccntroller
nov L,¥B_reset_cad ;reset mask byte
.mov_ ES:P_cCmnd_reg,AL ;issue reset coammand
;initialize edch bibkle device .
mov CX,¥B_maxdevs+1 ;ccunt for loop-#% of devices
nov . ;device # to initjialize
For_each:

mov RES:P_select_tubdev,AL ;select each device
nov ES:P_ceEnd rég,MB_init_cmd ;init this device
push Ag!gush CXtpash ES ;save bubble {iccunte:.zs

call Wai ;walt for controller to work

162

pop ES! popr CX! pofF AX ;restore Es,cgtr +bubble #
in¢ AL ipext device rum
loop For each .dec CX, loop if nct zero
.lssue msg ndicat‘ng formatt;ng ia progress
rl ;S 1{ an 2xtra line
mov DX, offset B85Q_ forma§ ing formattlng msqg addr
ca%l print _String ;Write asg to conscle
re

PRRRRBEXRBERRERRXXRERERRRABKERE SRR SRR EEEERBRR BN BRE BERE KRR
PRINT STRING subroutine =
ARRURERKERERRKRKEERNTRRRRIRABRE RSB E SR BN R R RS R SRR R B RP R NN
-called froan: Close Up Cet cont Addr,
_ _ Init_Cont, #aIn, S&t Up.
Prin%_S<ring: -** prints tuffer addressed un+il ¥E' hit
{** parm -n - address of buffer in DX
‘X% parm cut - ncne
aov éL B os_pstring ;function # for Bdcs call

esesvsases
" %%

call Bdd .call Bdos and print
ca%l Crlf ;skip a line
Te

BRRAEARRR R KRR RRREERAR R AR SRR B BREEE SRR RRERE KT X ER R GRS KR
PUTCHAR sukroutine *
AARRKKKRE KB EBRKREE R AR AR SRR ES R EEEREERERR AR R R AR E R RRE R K
;called frcm: Crif.
Putchar: -** writes character from AL tc console
-** parm in - output char in AL
‘%% parm cut - none
mOV éL Bdos_conout ;function# for Bdos call

LY TE PRY T TY

| X B]

mov DL,AL sload char tc Bdos reg
ca%l Bdos 'call Bdos and send
re

*#***t*t**#tt*#t*###*t#t##**###**#tl*#*t*ttt#*t*t*#****t#tt

s SET 0P sukrouti %

-t:*s*t*t:*-*:*:*:*la:**:taa*:aa*:**::t**:::4*:*:**:tt*ta:tt
s;called from: Main.

Set_Up: °** inits variables and issues signcn asg

'** para in - ncne

;#* parm cuz - ncne, effects global vars

call &rlf ;Skip an extra line

call Crlef 'Sklp an extra line

mov_ DX,offset msg_signon .sxgnon message address
call Print String ;Write asSg to conscle

moy_. DX,0ffset msg_version ;version msg address
cal Prlnt _String ;¥rite msg to consScle

cal rizc iskip an éxtra line

~1n1t~a1ize all variakles and flags
mov curr_bub_no,0 icurrent bubble ¢ tc 0
mo! curr_sectcr_no,0 ;current sectcr # %o 0
ra+

****t***tt*tt#***t**t*tt#tt*ttttttl*tt**tttt*t#tltt:tttt#lt
* IT subroutin *
###*tt*t*t***#tt******t#lt#*#*t#*t#***t#ltltttattttt*tttt
;called froam: Init Cont #rite_sectcr.
(%% Checks statys MEB contrcller for busy
i*% keeps’ check-nq (uazt) uasntil not busy
-** parm in - none
i#% parm Oout - ncne
aov Ax,3B_contbase ;address of conptroller fase
mov Es.Ax slcad ES to address bubkle

esveetasne

S
p
uf

163

E

R)

See_zero: .
mov AL,ES:P_status_reg ;get status register

and AL,MB_bUsy_check ;is it all zeros ?
z See_zero ;1f sc,keep checking for one
Cent_busy: .
mov AL,ES:P_status_reg ;get status reqgister
and AL,MB_busy_check ;seé if busy, and to mask
jnz Cont_TBusy ;1f busy, check again

ret

2030 o e ok o o 2 e ke o R RO A 2 o o AR o o 2 N 3 R A o ke
* WRITE SECTCR subroutine =
RAARRRKRKRERKAXRKRKATRARRBRRERSRBERRE SR RRERABRRARN SRR R RRE R XS
. ;jcalled from: Main.
Write_Sector: ;** writes sector using format patt to MBB8O
:** parg in - ncne
1*% parm out - none
call Comgute_?agepg ;compute 1st page# cf sector
;establish addreSsability to controller
mov AX,MB_contbase ;%ggﬁess of controller bise
: e
v

mov_ gS,AX ES to address bubb
;set multlgage mode) .
mov, BS:P_cmnd_req,MB_multi_page ;multipage mode

sload first page nimkér f¢r transfer .
mov AX,curr_page€_Bno ;current page # formatting
nov ES:P_paqesel_lg,iL i+ Fage select lo byte
mov ES:P_pagesel_hi,AH ;page select hi Lyte

;Sset number of pages To transfer = pages/sector
nov ES:P_pagecnt_lq,uB_gqges sec ; # pages to xfer
mov ES:P_pagecnt_hi,0 Thi'tyte of # is zero

;set up buffef to send data .
movy CX,MB_buflen-1 _;count for loop-buffer size

;selact bubble~device and’issue vrite cad .
mov AL,curr_bub_no _;current bubbie # fcrmatting
mov ES:P_seTect”tubdev,AL ;select current dev #
mov AL,fOormat_pattern ;loga format pattern
mov ES:?_wdat3_reg,AL ;write a byte to FIFO buff
.movy ES:P_cumnd reg,ﬁB_w:;te cmd ;write PIPO buff

. s;wait for int8rrupt ffom Contrcller
Write_int: .)

maovy AL,ES:P_int_£lag ;get interrupt status
and AL, MB_chkin®_wmask ;has interrupt been set?
_jz §rite_Int +if not, keep checking

;urite into WBB FIFO tuffer Irca fornat_gatte:n
mov AL,format_pattern ;byte froam ga tern to AL __
mov ES3P_wdata_reg,AL ;wIite a byte to FIFO buff

loop Writ@_int ;dec CX, loop if nct zero
push ES, ;save E§
call wWai+ ;wait for controller to stop
pop ES ;restore ES .
mov BS:P_cmnd_reqg,MB_int_dinhibit ;clear cont int
ret
gn**#tt*t*t*****#**:#t**:tt#t#s**#t*t#t*****t**********t**tt
o x DATA SEGMENT ARZA *
JEAARERMAKR R R RAR KB RRER R RAR LR AR ERERRERRREARRE AR KRR X KK
! DSEG
org 0100H ;leave room for base page
5*‘ B ettt £ - ¥ 4 iables-—---“—-—---——----——-—--- -l
Ascii_table db QO0H,014,02H,03H,04H,05H,06H,07H,08H,09H
rb 7 ;;for Ascii 3aH to 40H - {nvalid
db Oa#H,0bH,0cH,0dH,0eH,0fH .
cons_buff b conﬁuf_slze ;area for_consol? input
curr_bub_ro rb 1 ;tubbie device #0-7 formatting

164

curr_page_no ry 1 s;bubble page ¢ fo:latting
curr_sector_no rb 1 skub logic sect ¢ forsat ing
MB_cOntbase™ dw 0000H sbase segment addr for MBB-80
e ity string data area fcr conscle aessages --~~======8
asq_donedev db ' Done with a device.S$'®
asqg_endformat db ‘»Pormatt ng conplote...

db 'returnzng o CP/MI S
asg_errinp db *EHROB: not exactly 4 dlgits entered,?

db ¢ or invalid hex digitsi!s$
msg_formattiang db 'Pornattzng the devicCeSececes oo 3
mnsg_getaddr db cr, ‘ 4 digit seglent tase adar!

db ess cr BB-SO centrollér.!

%g 'nu§tsbe in hex (4 digits, tﬁen CR only)*
msg_signon dp * '

. db '** MBE-80 CP/M-86 BUBBLE FORMATTER *»§!*

msg_version db '

db 'Hnlti Eage Mode Version 1.0$°

db 0 GENCMD to fill last address
ApRERREERERRRRXEE end Of va:iables PRREREXBE NSRS SRS E ST R BN

ESEG

* #****#*#*#t**t*#*t#t**t#**tt#*t*t#ttt*t##t‘*tttl#ttttﬁ*tt
* BB-80 CONTROLLER AND PORT
xu #tt*tttt*-tttt#*#*t*t*tttttttt#t**t##ttttt#t#t##tt##*‘ttt
_Fagesel_lo b 1 :1s byte for page select, (0)
—ragesel_hi rb 1 ;@88 2 bits for fage select.(1)
_csnd_req rb 1 .connagd register, (2)
—rdata_req rd 1 iread data teqister, (3
—wdata_regqg rb 1 ;wrzte data regzste:
“status_rag rb 1 :Status register,
—pagecn¥_lo rb 1 :1s byte for page ccunter,
_anecnt hi rb 1 188 2 bits for page cnter,
_lcopsize_lo th 1 :1s byte for ainoef lcop sz,
“lcopsize_hi th 1 ;23S 2" bhits for ain loo
rw 1 .1ntern¢l use (page pcs
_Fagesize_reg rb 1 faqe size :egzs er,
1 I use only,. (D
_select_bubdev rb 1 -two uses: sel bub le dev

ipterrupt fla
and Pott def;nzt;ons t**

u P _select_bubde
Cofitroller

H.

*#*t***#*************“##*#*******t‘#t**#*“*tl.**tt.*‘t&#
]

BEnd of Progran MBSOFNT
#**#*#t*tt****ttttitt‘*t ARERRK SRR ABEEREE R BREE RS RE KRR RRE

END

nt_£ 2
Ry xxFeknkr end o

LTI IR Y YY T turg [4v] 'ﬂ'ﬂ'ﬂ'ﬂm'ﬂ'ﬁ'ﬂ'ﬂ'o‘""“"' LYY T Y

* %%

165

D e O AU S5 v Yl S BT . el iy 3 5 o 0

AERENDIX E
PROGRAN LISTING OF MBBIOS.A86

FILENAMES: Pascal = Hg.BIgg TEXT

CP/% = MBBIOS.A86

title fCustorized Basic I/0 Systea!

(EIERRKRRRRERERBRRAEFERRREE DR E RN RN SRR KR SRR R EF AR R R E X

< *
+* This Customized BICS adapts CP/M-86 to *
the following hardware ccnfigurationm: »
Processor: _iSBC 86,122 *
Disk Controller: Intel SBC 202 *
Bubble memory: MBB-80 with memcry-mapped I/C *
Memory model: 8080 :
x

*x

t 3

E

Programmers: J.A. Neufeld, ¥.S. Hicklin
Revisions :

ABERRRERERXEBERRERRRREREEER R EREEEEERER KR RRE R LR EEK Rk K

P L I R TR TR IR Y Y YR Y Y
[B2 XN NENE

R RLEL LA R Lttt L EQUCATES e o ke ok e R R Kk ARk kel g ok

;* x®

et it Miscellaneous eqguates =-=-==--=--- e e———-
addr_high_rans equ Q0fOO0H ;high para user available Rnu'
bdes”_int_¥ype equ 224 sreserved BDOS interrupt
cr equ OdH ;sAscii carriage return
disk_type equ O1H ;type for standard floggy disk
true equ -1 sfcr conditional asseably
false nct true ; for conditional asseably
1f) OaH sdscii line feed
max_retries equ 10 sfcr disk I/0, # of tries
ebbB0_type edqu 02H ;t¥pe for MBB-80 bubtle .

, sectoT_size aqu 128 sCP/M lcgical disk sector szz?

=T ------------- I8251 USART conscle ports ---------—------T
CONP_data equ 048H ;I8251 data port
CCNP_status aqu OdaBd ;18251 status port

;=== Disk Coatroller ccmmand bytes and masks (iSBC 202) ---
CK_chkin+_mask equ QO04H ;mask to check for DK interupt
CX”_home_cad equ 003H ;mcve tc home positicn coammand
DK read_cad equ QQ4H ;read command
EK_writ2_cad egqu 006H ;write command

--------- INTEL iSBC 202 Disk Contrcller Ports =-===-===--

P_base equ 078H ;ctrler's base in CP/H-&A
lt_tyge equ DKP_lase+1 ;operation result ¢t ge
t_byte equ DKP_Lase+3 .ogeragéont:esult by
:d se
P:itatuf equ DKP_base ; disk stat
- & 5

i gﬁ:blyte ofifgpb

;I ------- Magnetic butble characteristics (MBE-80) ==—====--
ME_buflen equ 144 ;huffer length fcr MEBR sector
MB_maxdevs equ 7 sbubble devices are $0-¢7
MB"maxpages equ 641 i of E ges on each device
MB_maxsectors aqu 80 % of cg. sectors on each dev
MB_pages_sec equ 8 ;4 of ag r logical sector
MB_pagesIze egu 18 ;bubble ev;ce page size

| MB_skew equ 12 iskev factor for page xlatlon‘

;;--- Magnatic bubble ccmmand tytes and masks (MBB-8Q) =---
MB_chkbusy_cmd equ 020H ;:is controller busg ?_status
MB_chkint_mask equ Q08Q0H ;mask to chk for MBB interupt
MB_inhint”_cmd aqu 080H .znterrupt inhibit/reset aask
ME"init_cmd equ 014 ;1n1*}alzze thg contrcller
MB_mpag&_cnd equ 0108 ;mult‘- page mode operation cmd
MB rea cnd equ 012 ;multi-page read coaaand
MB rese®_cad equ Q40H ;reset he contrcocller

| MB_writeTcmd equ 0144 ;multi-page write coamand
.................. Starting addresses ~—wmveccccccceccccecce==

Lcador bios is true if assemtling the
CADER™BIOS, otherwise EIOS 1s for the
cpu SYS file. This sectic¢n wil asszggdthe

LYY IITIT IR)

appropriate equates to the starting resses.
lcader_blos equ false ;** controls conditional asa
! not loader_tios
addr bdos equ QBOBH ;BDOS entrg Boxnt in cc?
addr_bios equ 2500H istart of S atte: cCp
addr” ccB 2dqu 0000H ;base of CC2 is
IF ;nct "loadar_ bics
! loadsr_bios
addr bdos 2qu0U06H ;stripped BDOS entry in CCP
addr”bios equ 12008 ;s<tart of LDBIOS aftsr CCP
addr_ ccg gu 00233 s1basea of CPMLOADER
IP ;loader_bios
il - abab A wn 4D 4D R an o . - . e - ova» o - ---------------------‘-----1
L
o % ®

IRSRRRkRRrRARANIRRR® End Of EQUATES PREXREARRARRKENRERERR KR

167

(RARRRABRRRARSZRRRRX START CF CODE %2R ANERAXFEASXARESAERRS

CSEG
orgqg addr_ccp
CCE: .
org addr_biocs
jmmme——- BIOS Juap Vector for Individual Routines --====e-=--
|
mp INIT ;enter from BECOT ROM or LCADER
ap WBOOT sarrive here froam BDOS call 0
mp CONST ;Teturn console keyboard status
mp CONIN ;réturn console keyboard char
mp CONOUT yWIilte char to console device
mp LISTOUT sWrite character to list device
mp PUNCYH swrite character to punch device
mp READER sreturn char froa reader device
mp HOME sacve tco _trk 00 on cur sel drive
mp SELDSK ;sclect disk for next rd/srite
ap SETTRK ;Set track fcr next rd/write
mp SETSEC :Set sector for next rd/write
mp SETDMA :set offset for user buff (DMA)
mp READ «read a 128 byte sector
mp WRITE szite a_ 128 te sector
ap LISTST ;Teturn list status
mp SECTRAN +xlate logical->physical sector
mp SETDMAB 1Sst segnggt base for buff (DMA)
mp GETSEGT yreturn " offset of Mea Desc Table
ap GETIOBPF iTeturn I/0 map byte (iobyte)
mp SETIOBF :8Se¢t I/0 map byte (iobyte

IRAXRRAEERE RANERERREEREREEERERRRR RN R RN AR AR RN R R BB R RRR K%

3 MRk ik k& 'INIT? uap vector destination Rk Aok 2
$ANERRRB KRR R KRR RRRBERXBEEERNEEARARBERIFREZRRRRARRBRBRRRBBERE RS

scalled from: tios jump vector.

INIT: s** Enter from BCOT &OM or LCADER
+*# parm in - npone
. . +** para out - none
;print signon message and initialize hardware
mov AX,CS s¥e entered with a_JMPF so use
mov S5S,AX :CS: as the initial value cf Ss:,
aov DS, AX :DS:,
mov ES,AX ;and Bs; .
;use local stack during initialization
mov SP,offse* stack base
c . ;aufo-increment on
isetup all interrupt vectors in low aemory tc¢
saddress the sof*/hardware <raps.
* .
iF . not lcader_bios .
call Init Bios_Int 3}Set up interrupts for CPY.SIS
ENDI? snct loader_bios
IF loader_bhios)
call Init L4dr_Int 7set up interrupts for LOADER
ENDIY? slcader_bios
iperform special initializations for CP/M~-86 .
call Load_Dma_3ddr ;load dma addr for devices
call Cevi€a_ITits ;init all devices

1638

s e 20 e N e & : a S

-

:(calls for additional initialization go here)
aoy_ BX,0ffse* asg_sjignon
call Print_Msg ;gr nt signop message
mov CL,0 ;default €o_dr A: o coldstart

jep CCP jump to cold start entry of CCP

(EBRERRRRRE R AEE PR R EREEEER NP AERSBRPE SR PR AR RS RRR R PR RR KRS & %

;s dRkRkkerx ¢ GBOOT? ung vaector destination *saskwsnnsy
(EARRARBENRRAAR AR S ARREERBREBR IR AERRAR R ERERRERR R REERRER S
scalled from: bics jump vector.

WBCCT: ;¥ Arrive here froa@ BDOS call nuaber 0
1*® parm in - none
;%% darm cut - none
jap cche6 ;entry to CCP at coamand level

ABRERRRRREREREERRRERERRER SRR ERENEREERREERERRERERBREE B RER KK
* »
* CP{H Character I,0 Interface Routines ®
: Console is USART (I82E1A) om 8612 at ports D8/DA :
s
e

HERRREBRREBRRERBERERRRERRPEEER LR B EERRE R SRR RS RREERREE R EERE K

FRREREFRRRAEARRRRERRRERERRE SR A REEREER R ERE R R REE R B SRR RRE X E
RPgRenknnnk CONST' juap vectcr destination RBBRBBRRER R
RABRRRERRAABARRRAXEAARAIX S SRS R R AR BARRERRRR RS SR RRRE R KRR X K

i1called frcm: bios jump vectcr.,
CONST: +*% returns console keyboard status
¢*%* parm in - none .
:1%% pars cut - returns status in AL
i 00=not ready, Off=ready

in AL,COND_status ;get status .

and af,2 ;S€e if ready-bit 1-is set

jz Const_ret ;1f not, it 1s zero and not ready

or AL,O0fTH tils :ea&y, return non-zero
Const_ret:

Te

(ABBRARRARARNRRARRARLRRARRBRE SR AR IR RS ARE KR ERRER R R SRR KRR
RdsRnkknnnk (CONIN' jump vector destination REBER RRME R R
RAARKRERRARARSERRRERRRARRPRRERRR R R B ARERRR RN RRR N R RN R RN Rk
s;called frca: bics jump vectcer.
CONIN: ;*% reoturns console keyboard character
+*% parm in - none .
s** parm out - returns character in AL

call const 1get _conscle status

test AL,AL s1ds it zero (not ready)?
jz CONIf ;1f zeroc, keep _checkin

in AL,CONP data ;ready, so read character
ang afl,07¢n iremoVvé parity bit

re

169

i gt i i - . N

~*‘.tttttttttt#t-ﬁtatttttt#*tt#*ttt#tttttt#t‘t“ttt‘ttt‘ttt

;*"****“** ' CONOUT? vector destination #*sussasssxs

TARRARBARNE SRRR SR RE R R BN o AREBI RN RSB AR RREE S ERERE S RRR % 0
;called from: bics jump vector.

CONQUT: i#% yrite character to conscle keyboard.
+®** para in - character to be outgut in CL
s*% pars cut - none
in AL coNdP_status ;get console status

1 ige if read -bit 0-
%z CONbUT zezc, ready g checking
mov AL cad 1nput Farea to AL or out
out COﬁP data,AlL .output chafacter to consolie
ret

-e

;itt#ttt#**ttt*#*tt*t#t**‘*##‘#*ttt#tttttt#ttt*t#t#t*ttﬁt#t
R¥RRkRkRkRk '] TSTOUT® vector destination ¥sasssssknx
PRARRARERRERERERRAREERR " AR SIERRRSSEBRRR AR BRR K R RRRE TR Xk

scalled frca: bios jump_vectcr.
LISTOUT: ;#% yrite character to list device.

i#% pars in - none

;e para cut - char to be output in CL

snot %nplenented
re

-t##t*tt#**t#t**#***#*#*t*#t*t**t#ttttttttttt:*#*ttt#t**tt*
;RARERRRRRER S LTSTSTY vector destination ##%xkxinkixn
3 A AR Ao o o o o e a* BESBRREEERBRRERE XX RRRR R RRE R RR R KR

;called from: biosg gung vector.
LISTST: Pha returns the 1lis atus.

e para in - none . .

-** paras cut - list device status in AL

] 00=not ready, Off=ready
;no%e%npleuented

) Q**’*#*tttti‘#‘i..‘#*t*#*#‘**t*“**“*tt#*tﬂiittt."*‘#‘*

;EAAKRRAkRR®k ! DINCH vector destination R AR RIRR
-*tttt#t*#*t#tt#*ttt** - PP T e e P R L 2 2
;called from: kbios jump vector. .
PUNCH: ;1*% write character”to the punch device.
e parm in - caaracter to send in CL
;%% parm cyt - noae

;not iasplemented

mov AL,01aH ;return eof for now

ret

170

R - wraermtew mpstebem -

;i*t*t***tttt#t*tt*ttttt#tttl‘ttt“.tttt“tt.ltt“.‘tt‘#“t
;Menknahhknx ' READER' vector destination ssssssssiss
SHIBMAME R ARk BN KRk ER -: SRR ASIRFSVEEN . S ESSERR S SR LLREE S
;called from: Ltios gu !OCtOﬁ. .
REALCER: '** return characte reader device.
L e para in - non
] parm cut - ¢ racto: read in aL
noz AL, 01aH ;Teturn eof for nov
Te

-*tttttttttt*ttttt*tt*tt#tt*t#*#*#ttttﬁltttt.ttltt*lt##t#:t
;A dRRRRRARRX VGETIOBP' vector destination *¥sxxsassxx
PEARABERERR KRR SRR R R AR #t EREEIBARABREEEAKKR AR SRR SRR KRB RN
scalled frcem: tics juap vectcr.
GETIOBPF: (E% return I[/0 map Eyte (iobyte)
s*% rarm in - npone

) g parm cut - returns_iobyte in AL
zov AL,iobyte ;iotyte not impleamented
re

-e

;*Qtt#t*l***###****t#*****##tt#tt##*ttttt*t***t*t#t*ttt&ttt
;A nkhRghakr (SEPTOBP? vector destipation =#sskssknxs
IR RRARRRRAE R ERR KRR NN S PAASPFR RTINS T b e rbeped
s;called from: bios juap vectcr.
SETIOBPF: '** set I/0 map byte (lobyte)
: parma in - Jjobyte to be set in CL
) parm_cut - nohe,
mo: lobyte CL s;ioktyte not implemented
re

IRPAXAKEREERRRARAKARE ARRRAR R R BAREKERXPRERERR R RRRE R RN N KRR KX
ol t

S isk_Input/Qutput Routines
°: Cisk is 1202 Contrcller with perts zat 07BH for 8 bytes *

; e e e e o0 e 0 A sheafe ofe e e o Aok 3k A AR 3 ok ok K 2 Kok sk R Ak sk skak ok K ’#lt"ﬁ*l

5*tti!#ttttt*****#**t*t##t#****ttttt*t**#**!***#*#:**#ttttt
skannkkkhenk ¢ SELDSK? unE vector destination #xmmkmkmkki
§ SR AR A e A T R O T o IR K A A AR AR A 2 I A 3
;called from:; bios jump vector.
SEICSK: (e select disk_ for rnext read/wrize
R para in - disk number to select in CL
:%* parm cut - address of first dph in BX
ph is a disk parameter header.

mov disk, &L ;save disk number
aov Bx,O ,ready for error returln
cmg Cl,nun log_dzsks sbeyond max disks?
nb seldsk iTeturn if sc
mov CH,0 double(n)
mov BX,CX ;Bx =
mov CL,4 ;ready for *16, 16 bytes each dpk

171

shl BX,CL ;D= n * 16
nov Cx,offset dpﬁsse .address of first dph
pktase + 16
Bi i1save @& bas

°de2ern*ne type of device this disk number is
xor BX,BX -alear BX of 1index
mov BL,disk ;load disk number for index
ROV AL device taﬁle[BX] :£find type of device
mov device i i istore the t{ pe retu:ned
smake CP/M loQgical sk # sapping to gy cont or
:MBB-80 cont address depend;ng on evzce

cap device pe ;is th;s a flo
. jng kgad mﬁbg cgn% 5§¥ ngi tufl-eo cgg¥ka§dr

mov ogica a : ge is

mov DK 3 k i Btcre E apygcont 325{ 3

jmps sk ret ,gc return

load_ab 80 con,.

add BIL,BL sdcuble disk # for word index

mov AX,MB_ logical table[BX] ;get addr of cont
] mov MB_cofitbase,AY ;store as current base addr
k- Seldsk_ret:™
« po BX srestore dpbase for return

Y)

'*‘*************#**#'*‘**#**t##*t##**‘*#***‘t#**‘#t#t*#***#

~*##*******t ‘HONE® vector destination R RRKk KR X R
R T] " ARRBUREEE R EERBREE XK SRR S RRES KRR RN
icalled froa:; tios jump vector.
HOME: ;*% gove t¢c trk 0 cn curr selected drive
;** para in - none
;¥*% parm out - none
cop device type,disk_type ;is this a floppy disk?
} jne Mbb80_home ;1f not, home bubble
mov DK io"com,DK_hcme_cmd ;hcae the floppy disk

ck,0
call Dk Execute Cad

jmps Home_re¢ 190 return
MEbBO_honme:
Xor CX :clear CX arm - track=0
Heme gg%} SETTRK ;set track For bubble = 0
“ret’

-*#4’**#’#****#***#***l*#***1##**#*‘*****“*******#*******t

;*********** ' SETTRK" vector destination $®k&kixikkxx
TRAARBEKRMA R RE P RRR AR KRN :: MR WA A AT N R ok K
& scalled frem: tics jump vectcr, HCME.
s:i SETTRK: ;%% Set track for next read/wWwrite
- +** rarm in - track address in CX (CL)
b parn cut - none

aov track, CL to:e track nuaber

ap device zpe & type ;is this a floppy disk?

Settrk Te 3 just return

i call Mbb8U_ Track Xiat bubble, so xlat track->bub#
Settrk gct'

1
eew

172

» 0 i 1 A SN Yo sl G s iy 0 ORI . | s el RN 5 g 85112 ki § 0

(FAARFRREEX R PSR R BRRR XSRS AR ISR B ERRE SRR SRR R R E X E S ER B RE Rk

;eesnnssnnss (SETSEC' jump vector destination #**sussnsux
JENVRARRBEERAARARRGRAREEREFSRBER R SRR I IR SRR EAR KSR ERRIRRE K
:icalled from: tios jump vector.
SETSEC: ;*¥% Set s¢ctor for next read/write
+#% parms in - sector number in CX (CL)
1®% param out - none
ggg sector,CL istcre sector number

RAFRRBERKRRRASERARBASE XX IRRAESRSE RS BRE RS SR SRS R IR IS S BXR XK

RARRRukaARE ISECTRAN'® umg vector destination *m*sssswkxs

TRIFABKEREERRRARRRBEREEE XX SRR R R AR LS IR ERRS SR RRAR B SRR ABRR SR
:called from: Ltios julg vector.

SECTRAN: ;% Trans]late logical %o ghysxcal sector

** parm 1n - sector ip CX; table at &DX]

** para out - physical sector # in B

mov CH,0 sclear bigh byte

aov BX,CX sload inpat para for return

test DX,DX +is there a xlat to be done ?

Jz No_skew +1f not, just return
’
’

add BX,DX add sectlr tc tran table address
mov BL,([BX] get logical sector
japs Sectran_ret ;gc return
No_skew;
add BX, 1 ;hc xlat,CP/4 sect #0 => sect #1
Sectranfret:
re

tRIFRREXBRRREREBEAXBERXEN SRS RRRAAEREERRRERES AR ER S RERE R SRR R &

s RANkAEkRRRkR I STTOMAY UIE vector destination ¥*¥skxskkns
RBRRARARER KRR RRKERRARBAR AR S XXERERSRERARR R R XXX S SRRRRSERR R
;called frcm: bics jump vector.
SETDMA: ;1 **% Set offset for iser DMA Luffer
i*% parms in - DMA offset in CX
s¥*% parm cut ~ ncne
aov_dma_offset,CY ;store dma offset]
call LoEd_Dna_det iupdate DMA info fcor all desvices

rat

(RARRRRRRREERRARRERKEAR A AR ARERRR BRI RRRERE KR RRR R R RRR R RRR KR
xanknpknnns SPPOMABE'! jump vector destination *®axkmxamkkax
(EIBARRRRAX KRR ERAKEREASABIRRAERR X RRBRKRRRERRRRR X XXX KRR X
;called from: kios juamp vector.
SETCMAB: ;%% Set seqment basé £or DMA buffer
:*% parm 12 - segment in CX
;%% parm out - none
mov_dma_segmeh* ,CX ;store dma segment .
ca%l Load _ na_A&dr supdate DMA info for all devices
Te

173

A2 1 457 iy U inbipe MRS s €Wy v Y igim

'*t****#lt*t*tt#ttttt*t**tt#*tt####*t‘*ttt*t*t*‘*‘ttt*tttt#

i*awnansnngn GETSEGT! vector deéstination sakkssxakix

$ R AR AR R AR R R RN t* ABRERBRRRREXRERES SRR SR BEERRE RN
;called from: bios gulp vector.

GETSEGT: ;%% Return offset of mémory desc table

:*% para in ~ nogg

s*® parm gut - address of tatle in BX i

moy BX,oftset mem_desc_table

re

-e

H P AERBBRRR X R RERARE R BEEBRPER R RRE R EREE R R hBRR R R **“**
.]

+* All I/0 parameters are setug:
disk is disk nunker SELDSK
track is track number SETTRK
sector is _sector number SETSEC
Bach device maintains its own DMA info _as required

g its controller, using dma_offset and dma_Segment.
READ reads the sefected sectdr to the DMA addréss,
and WRITE writes the data from the DMA address to
the s2l2cted sector. The MBB-80 bubble will use diff- A
erent routines ¢to perfcra the read and write funct-

The MBB-80 works with MB _bub_no {fron MBB_Track_=* I

tEZE X E LR R

ns.
xgat) and MB_page_no (from Mbb_Sector - tHese ~
values are d8rived from the vars, track and sector.

o e 2de e 0 e ol ogn e o0 ok e ake A ofe e e o ol ook Ao o0 AR ot e 3 A R AR AR R ek e g el oke 2k e ke e sk ok ok

[A XS EERE N NERZN .
% % %

*****#*#****#*#*t**#*‘**"*****#‘***‘*****‘***t*‘****t"#i
o 230 20 Jpoie e e she e 2 ke 'R vector destipation BERBEEBREE S
-**tt****#**********ti ** AN R R R R 2 R o AR o kR

;called frcm; bios jump vectcr.

VOG0 G0N IDVIVIDIGIVINIVIBIVIVEVEBII0Y

READ: (%% Read a 128 byte sector
P del paras in - none
x rm cut - return code in AL

(Decvee

FF = ynsuccessfuyl
cmp dev_c typg dick tyre ;is this a flopg¥ldzsk°

= jne ubh].t= r2a ;If not, use bubble ro
S mov
‘ mOovV AL DK disk ;contine disk selection
sal CcL™ ;with opccde
L or Au 5K read_ cnd i¢reate iopb for read
mov_ DK_i3_con; load icpb
call DK 'iocuée cagd’ ;perfora the read
jmps Read_ret .te*urn
Bubble_read: suse bubble routine to read
. Read_ ll ubbso Read sperform the read
& a re-.

k- “ret
. 4 ;

A

'

174

PENESE PR

-ttt#tt*t*t:ttt*tt##*ttttt#ttt#‘##tt#ltttt*#ttvt*#tt*#*tt*t
(RARRMRMEREE | GRTTE ! vector destination B RREERER %K
-*##t*ttttﬁ*ttttt*ttﬁt 4 P T I P r r T f PP R 2 e
;called frcm: bios jump vectcr.
WRITE: ' R Writes a 128 byte sector
g parm in - none
;** garn cut - return code in AL
a : 0 Ei°§':PP = unsugcessfgi disk?
m evice e,dis e ;is ¢t a o is
ne Subble:u PEe S reTEo¢e ! *ase babble chhtine

mov CL, 4
mov AL,DK_disk ;comkbine disk selection
sal AL,CL™ | ;¥ith opcode
or AL 6§ vrlte cmd icreate 1opb for write
moy DK_i3_con,X ;lcad 10Fb
call DX_EXec {e Cand';perform the write
jmaps Write_ret T ;Ietura
Bubble_write; suse bubble routine to wrice

call Mbb80_Write ;iperform the write

B3 DA oA T A N e A A O o o e R A o o o oK K Kok R R
-

The following subroutines perform various specific *
tasks for the abcve jumfp vectors. :

3 323 e age v e it ke 20 2 20008 2k 240 200 o e 6 2 ool ok o e e o e ol et 6 o ot ok e A Aok ok ok K WM X R K R

o o oo 2 e 2 2o ofeote ok e e e ke e ool kol Ao g ok 2l o o ok ko e Rk ke ok B Ak R K W R
x

DEVICE _INITS subroutine
ARERRRAREERERERE KB RATERRARRRRERER K PERERERERKFRE X BRRERRRR R X
'called from: INIT,

*x Parform any init necssary for
all devices generated.
parm in - none
. arp cut - none
;(**x Device initialization for the iSBC 202 disk **xx)
sload address of the isSBC 202 icgb échannel ccamand)

]
*
*
]
=
*
-
o
*

Device_Ini‘s:

nocco.ot
- %
l'l'

mov CL, slcad CL for shi
aov AX.CS ;lcad AX wich this segnent
sal AX,C ;mcve segment to _high’'b

L
add Ax:, ffset DK iopb ;0ffset of iopt {chan cad)
mov DK iopb_addr,XX ;stére for later use
;see if aTy iSBC 205 controller to be initialized
xor CX,CX ;clear CX for counter in lcop
aov CL,nun log_disks ;load # cf disk devices
Check_1202:

aov x.cx ;jindex into device %takle
cmp device_table{BX),disk_type ;1202 disk?
e Init_1202 iif “so, go init the ccntr'ler
o0op CheCk_1202 ;check neéx
Init 385 pone_I2€2 ;nc i202, gc init mbb80s
ni :
'i AL,DKP_result tjge ;clear the contrcller
in AL,DKP_ reeult_bx e
out Dk raéset ,ALT; AL is dunmy for thnis command
HY b ded Deyzae initializaticn for_ *the MBB-8Q bulble **x)
5 ;1n153%llze each MBB-80 ccntroller defined
cne_i :

“xor CX,CX ;clear CX _for counter in lcop
aov CLgnum log_ disks slcad # of disk devices

. push ;save ragister
Inzt_mbb&O:

175

i+ e o em e B G0 O et

xor. BX, BX ;clear BX for index
mov BL,CL :1cad ceocnt # _to BX
dec BX ;subtract 1 for table
add BL,BL . 3dcuble index for word lockup
nov Ax,ﬂB_loglcai table[{BX]_ ;get cont addr
cap AX,MB-null ;Is it a null’addr (place holder)?
2 Next_mbb80 :if so, go tc next cont'ler
| _ mov MB_contbase,AX ;load to current base
i ;initialiZe page size and mipor loop size

mov ES,AX ;1load ES to address bubble
aov AX,MB_maxrages sfages per bubble device
mov ES:MBP_lodpsize_lo,Al ;locpsize low b{te
mov ES:MBP_lcopsize_hi,AH ;loopsize_hi byte .

. mov ES:MBP_pgsize_re€g,ME_pagesize ;load page size

;issu2 reser Coamand *c the~cobtroller
mov AL,MB_reset_cad ;reset mask byte

. mov ES:%BP_cand_reg,AL ;issue reset coamand

sini<ialize each kibble device
push CX ;save CX, outer ccunter
a0v CX,MB_nmaxdevs+! scount for lccp-# of devs
mov AL,O sdevice # to initialize

7 Fcr_each:
' ~ mov ES:MBP_select_Lub,AL ;select each device
mov ES:MBP _cand :egsuﬁ init_cad élnlt this device

push AX!puSh CXTpu ES ;saVe bubble#,counter,ES
call Mbb80_Wwait swvait for controller

pop ES! pop CX! por AX ;restore ES,counter,bubbles
inc AL :next device number

loop For_each ;dec CX, loop if ncr zero

pog cx srestore CX, cuter counter
Next_mbb80: L.
loop Init_=bta0 ;go init next cont

. pop ES ;festcre register

Device_Tet:
ret
i
IRAAEARKRRRREBRRRERRAREXARREKERIREEREERRRRE BB RER KRR SR X RRE N &
X DK_EXECUTE CML subroutine *
EBRRRRRARRXBRARTREZRABRNKAXREEXXREXERERABXRERKXXEBERERERAR
;called from: READ, WRITE.

Dk_Execute_Cmd: ;** Executes a disk read/write ccmmand
*% parm in - none .
*% parm out - _status of the op in AL.
= “00= CK, FF= unsuccessful

‘~ lcad_retries: . .
nov DK _rtry_cn*,max_retries ;locad count for retries
s :gepd %opﬁ to Tisk con¥roller via two ports (2 bytes)
end_jiopb:
in AL,DKP_result_tyge ;clear the contrcller
in AL,DKP result”byte ;clear the controcller
mov af DK”iopb_addr ;get address of zcgb.
out DKP i%pb_1l0w,AL . Ooutput low byte of icpb addr
mov AL, XH 3lcad hlgh byte t0 AL tfor cutput
ou* DKﬁ_;opb_h;gn,Al sout high byte of iopk addr
D,:ﬁhecf for inteTrupt frcam disk ccecntroller
! isk_in+%: .
-In AL DKP_status ;get disk status
and Af DK chkint_mask ;interrupt set?
4z Disk_ifit 71f not, keep checking
isee if in¥errupt_ signifies I/0 completicdn
1 in AL,DKP_result_tyre ;get Ieason for interrupt
canp Af,00% 7was I,/6 complete ?
jz Check_result ;if so, go check the result byte
in AL,DKP_cesul+t_byte ;clear result byte
¥ mov af,087H 7disk vasn't ready - lcad ccde
i imps Rectry s:lcad err ccde, and gc retry
;chéck resul< byte tor arrers

176

Check_cesult:
in AL DKP result b te ;qet result byte)
and Af,0 eck for error in any bit
jnz Reﬁry fcund cne, retry
iread or wriite is ok, AL contains 0 for returr
mps Dk_axecute rét
2 ;te ry the command until aax_retries attempted.
etry:
Ymov DK_err_code,AL ;save error result byte
dec DKIrtry_cnt ;dec number of attempts sc far
Anz Send_iopb 'if not zero, send command again
;did max_re¥ries, no Success - lssue eITOor message
1l Dk_Print Err ;print out appreprlata €Ir @osg
1n AL ,CONP_data flush usart receiver buffer
call con Echo iread upper case console characte
cap AL,*'CY
je Hboot Junp ;carcel

cmp .
nga te;r*es iTetry max times againr
cmp
je DK execute _ret ;igncre error
or ALY H ;set code for permanent error
jmps 6k axecute_ret
fboot 1unga°°T ;can't make it w/ a short Jjuamp

Dk_ execu*e ret:
ret

AARRRRRREERBIERRARRRRARARRRARIRRRERRERRXKERRRRRERARREXE & X
DK_PRINT ERA suylbroutine *
#*t*t*******tt!tt*#*!#*tt*#*t#t*t*tt#*#:*t‘#*ttqt*t*#‘t*
) ;called frcem: Ck_Execute_cad.
_FPrint_Frr: '** Prints out disk erroT messages
: e parm in - uses DK_err_code
3 e para cut - ncne
nov EL,DK err_code ;load code for index to table
nov ,clea: high byte of index
test Bi 0fHy ssee if efror bits in low ribble
i iz Use ﬁl index ;error is in high nibkle
Use_low_ingd®e
mo¥ BL, DK erc_ loznx[BX] get offset in addr table
jmps PEin¥_it go prln€ the message

pihio e o
) «cesvteses
t I’ | X]

.. Use_hi_ lndex'
| mov CL, .shlft four bits right
shr Bx CL ;shifs 1t right
{ > tmov BL DK_err hllnX[BX] ;get offset in addr tabnle
rint_it¢t
§ mov_ BX,DK_err tahle[BX] s load addr of message
3 ca%l Prin¥_Ms§ ;print appropriate mRessage
) ra
3

Loy Ir not lcader_rtios
P JHAARRRARRRREEAARRA S RASARRTARSR I ANR AR AR R BRE KR XX KRR RS KRR KK

1* INIT BIOS INT subroutine *
IRATERRAARREAAAAEREATRARXRERARRABK SR RS RERRRR B R AR KRR KRR R R
;called from: INIT. (if not loader_tios)
Inlt_Bios_Int'°** sets up the interrupt vectors in low
** pepOry tc vector soft/hard interrupts.
** pars in - ncne

push $

*%x para out - none
] !gu sh ES isave the DS & ES register
mov iob 6) ‘clear jobyte
mov AX,
mov DS, AX
aov ES,AX ;1se+« ES and DS to zerc

177

L——__._ . - |

i1setup inter rgg to address trap routine h
aov into of set offs¢t Trap_Handler
mov intQ” sequenf
aov DI, u”
mov SI,0 sthen propagats
mov CX,510 strap vectof to
mQvs AX,AX ;all 256 interrupts

-BDospoffset to proper interrugrt
mov bdos_int_offset,addr_bdos
pog BES !"pop DS ;Testore the ES & DS register

re
ENDIF ;not lcader_biocs

IP loader bios
-t¢:*:*¢a¢:¢**::*t:¢ *!t*tttttttt*t#*tt##t*:tt*ttt#t*t:ttt*
ol

NIT LDR_INT subroutin *
-*ttt**#ttt*t*t*t**##l#*tlt*t*‘tttt#*tttt‘t*t#**ttt#tt#*ttt
;called from: INIT. (if loader_tios)
Init_Ldr_In*: i*% sets up the interrupt vectors in low
+** poemory tc vector soft/hard interrupts.
:w% parm ih - none
-** arm cut - ncne
. ;BDOS offset tc proper lnterrugt
3 puah DS isave the DS register
. mov AX,0 iset t3 absoluté low memory
mov DS, AX imake it addressable
| mov bdds_int_offsSet addr bdos .offset
mov bdos”int seguen€ this segment
: . pop DS -res{ore DS register
:issue messa e 'elllng where lcading froa
mov BX, fset msg i202 ;assume 1202
3 cmp dev cn table,dIsk_ty Ee ;check default disk
- 1e Print_Toader ;is disk, print msg
F BX, offse nsg_mob ;its the abbs0
. Print_ loader
3 ¢al rlnt aeg ;write msg to console
.(addl*lonal Loader initializations go here)

ENDIF sif lcader_bios

t********t**##****t****##*tt##*#*#*tt*t#*t*#t**ta**ttttat
LOAD DMA ADDR subroutine
:t::*tas*a**-*-lttsnta*t:::tt*at*:******:*ttt*tttta*a
;called from: INIT, SETDMA, SETDMAB.
Load_Dma_ Addr--** upon new CMA a&dr, updates all device's
B MA words, channel commands, etc., that
i#% are peeded fecause of & nev DNA addr.
;¥* parm in_- none, ope€rates using variables
e dea_orffset and dma_segment.
+¥* parm Jut - none pdE3tes var DK_dma_addr
;update 1bBC 202 disk controile: dma address™
mov CL, +1SBC 202 uses 16-bit address
aov AX, dma segnnnt ;load segment
sal Ax CL ;acve segment to high bits
add Ax dma_offset ;add in dma offset
gov D& dma™ addr AX :stcre new dma addr - disk
:MBB-30 uSes 20-bif ad&ress, therefore can use the
;dma_ iegnent and dma_cffset variables directly.
ré

I#*

LY YL Y YR

Py Yy

178

B N s R

e

RBERRAXRERERRFARKRARYREEREB SRS REIR R A REE BB RRZRER S S ER R RN X
»

™ MBB8O READ subroutine
JRABAABRARRRAXRASXRASRET IR IRRBR IR R RRSRB AKX KR AR S PRBE SRR B E
scalled froama: READ,
MbE80_Read: ;*® reads a sectcr from bubble
;%% parm in - none .
;®% parm out - status of the op in AL,
;*% Q0= CK, FP= unsuccessful
pusg ES 18Save register
call Mbb80_Sector_Xlat ;compute 1st page# of sect
;establish addressability to controller
mov AX,MB_contbase ;iddress of ccntreller base
;loa

mov ES AX d 35 to address bubble
;set nultlgage mode _

aQv ES:3BP_cmnd_reg,MB_apage_cad ;multipage mode cad
sload first pdge nilm £ tfalisfer

mov AX,MB_page_no scurrent Eage nuaker

_2a
& or

-10.AL :

AH ;page select hi byte
ra

MB

e
bét
mov ES: MBP pagése% %
o
1

_ Qs ;page select lo byte
mov ES: MBP_pagese i,
;set number of pages ¥o transfef = pages/sectcr
mov ES:MBP_pagécnt_lo,MB_pages_sec ;#fpages to xfer
pov EE:HBP adecnt_hi,0 ;hl byte of ¢ is 0
;set up daa addréss tT receive datza .
mov CX,MB_buflen ;scount for loog—butfer size
push 0$.save CP/M's D
mov AX,dma_segment ;get dma segment
push A ;5ave dma ségment DS
mov BX,dma_offset _soffser Oof dma area
:select tubble device and issue read coasand
mov ALl,MB_bub_no ;current bubble gusber
pop DS ;done local, readdr daa area

mov ES:MBP_select_tub,AL;select current dev &
mov ES:MBP_card :eg,uﬁ_read_Cld ;ilssue read from FIFO
2 ;Ha ttfo: interrupt® ficm Ccntréller
ea nt:
“mov AL,BS:MBF_int flag ;get interrupt status
and Al,¥B_chkInt_®ask sinterrupt set ?
jz.Reaﬂ_Lnt s1f zero, keefp checkirg
;see if redd enough fxem buﬁhle.sectox to £ill dma area
cmp CX, {MB_buflen - sector_size) ;transferred enough?
jnz Read_ole sif pnot, read another byta2
pop DS srestore CP/M's DS
mov BX,o0ffset MB_overflov ;resat dest to coverflow
. ;gead from 48B PIPO buffer ianto daa area
ead_one:

mov AL,3S:MBE_rdata_r2g ;read a byte into _accus
nov gsi],lL ;load accua into dama area
ac BX , ;<ncreaent index

oop Read_int :dec CX, loop if nct zero
push ES . ;save 2§ for call

call Mbb80_wWait ;wait for coptroller

pop ES _sTestore 2S5 after call
aov ES:¥BP_cand_reqg,MB_inhint_cad ;clear cont int
pop ES ;1Testore registaer

aov AL,Q ;indicate success

ra<«

asee

179

WA RN A RN WA AR 2202020 2200 20 0 2o e ol 2 oo a2 kR sk

v MBB80 _SECTOR_XLAT subroutine *

IRBARRRRRAXERBE AR ARG RAXAXRRFESEIXRB XSRS ERRR AR AR R R EREKERRE & ¥
;called frcm: Mbb80_Read, M4bb80O_urite.

MbE80_Sector_Xlat:;** computes_ 1st rage# Ior a gliven sector
;%% on a stngle chip’ Based op 80 sectors

;1*% on eac hip - sector = 128 Lytes.

+®* para in - none, WOrLks on sSactor

;*® parm out - none, updates MB pigeino

xor AX,AX :set AX to 0 to Hc age#

xor CX,CX ;clear CX for counter

aov CL,sector sctr for translatica loop

xor DX,DX :clear DX

mQv DL, MB_sector ;secté for 1st sect on trk

add CX,DX ;add 1st sect# %o 102 sect#

dec CL . ;subtract 1 fcr the oog

Z M4bLkBO_sx_exit ;sect 1 is page 0, no xlat
add_skav:

add AX,MB_skew ;add skew between rages

clc ;clear carr

sbb AX,MB_maxpages ;204 to # of rpages

jae Dec_séector ;jumg if positive (CF=0)

add AX,MB_maxpages ;:¥ent (-), add back #pages
Dec_sector: .

loop Add_skew ;dec sector#,add skewvw again
Mbb80_sx_exit?

mOV MB_page_no,AX ;store page number

ret

IRBRRRERRRRAKARIERAE SIRERRBIRSEBESR A B BRE RS AR REER SRS K AR K%
T MBB80 TRACX XLAT subroutine .

5*t.****t‘t*“*#ttt"ﬁl*#,t*l‘*“."'**t*ﬂ‘*t***###tt.ﬁ*“.

;called frcm: SETTRK.
nstO_Track_xlat:::* computes Lbubkle ¢ from track #. Gets

;** first tubble sector (1-80) for that
;#% track for later conversicn tc page ¢&.
;®** para in - pone, works oam track.
:** pra out - loads MB_bub_nc,MB_sector
xor BX,B ;clear ZX £Or add
mov BL,*-ack :load track - index,
add BL,BL :double track# for index 3
aov AX,¥B_*-rack_tatle[BX) ;get word rrom table
mov NB_bub_no,A : ov,bgte = bubb devices
nog 4B_sec®or,AL ;high Dyte = 1st sectort
re

;
IRIBRSRESINAREE SAREE ISR ER I SNIR S ISRV BB R ARA RN SIS R P RRE A BKE
: MBB8Q WAIT sutroutine =
(HIBARBRARE RS ERAARRERTRESR IR FABADERAIBAXIE AR AR SRS XSRS RE
;called frca: Mbb8Q_1Init, Mbb80_BRead,
, ' MbL80 drite. k
M-EB80_wWait: ;1#% checks statys of MBB cont for busy

;*8 keeps checking (wait) until not busy
:1*% parm ipg - noneé
;=% Dara cyt - ncje
aov Ax,ss_conibase ;address of cont Lase
20Y ES, AX :load ES t» addr tuoble
See_zero:)
20V AL,BES:MBP _status_reg ;get status register
2N _ and AL, 4B _chkBusy_cad +35 it all zeros ? -
- cont 2 See_zeTo :1f sc, keep checking
cn usy:
{ 'movyAL,Es:aBP Status_reg ;get status register

el v

, and AL,MB_chkBusy_cad isee if busg, afd t¢o mask
3 ggg cont_bBusy :1if busy, check again

180

-0

° #‘*****##t*#***********t**‘t*#*#**#'**t‘.‘#“‘*#*"****

H MBB8O _WRITE subroutine

-t*t*******t#ttt**ttttltttttt##;tttt#ttt***t:#ttttt*##***
;ycalled frem: WRITE.

;** yrites a sector to bubble

;** parm in - none

;%% parn out - status of the op in AL.

:1*% "00= CK, FF= unsuccessful

IF no* lcadnr bios
isave register

sh ES
call Mbb8Q_Sector_IXlat get 1st fageo of sector
;establish adaressabIllty to cont:o

mov AX,MB_contbase 'address of controller base

mov Es AX™ :load BS to address bubble
;set multlﬁ ge mode

nov BP_cund_req,MB_mpage_cad ;multipg mode cad
sload flrst page niabéf feér trahsfer

mov AX,MB page_no scurrent gage nunher

mov ES:MBP_pagésel lo,AL ipage select lo

mov ES: MBP_ agesel hi ga ge select hi bgte
;set number of es to rans ef = pages/sector

mov ES:MBP_ agecnt lo uB ges sec -tpaqes to xfer

mov ES: MBP_ gagecnt i byte of is zero
;set up daa address fcr ﬁzansfe

MbE80O_Write:

aov CX,M4B_buflen-1 ;count for loop-write size
push ts 'save Cp/4's D

aov Ax dma_segnment dna segaent

push 3 ma seglent Ds

aov Bx,dna offset d:ess of dmsa area

:select bubblé@ device and 1ssue yrite cad

mov AL,MB bub_no scurrent bubble number
aov BS: MBP_seTlect_bub,AL ;select current dev
pop DS ;readdr dama area

nov ad first byte

AL : 1o
ROY BS?LBP wdata_reg,AL 'urlte byte to ¥BB buff
inc BX ';nthlen index
sov ES:MBP _camnd_req,MB_write § isend vrite to MBB
. izal* gor int3rrup® £ ¢n Ecntrel
rite_int:
#ov AL,BES:MBP_int_flag ;get interrupt status
and li MB cthnt lask ;gnte:rupt set ?
e :1f zero, keep checking
IWI °e lnto HBB FIFO tutter fton mA area

mov AL, S byte fro- dma to AL

,ov Bs BP_ vdata _reg,AL Tite a byte to MBB buff
ncrement xndex

loop Hrlt- int ;dec CX, loo if nct zero

pop srestore CP/ S

pus h B ;save BS for cal

call #bb80_waie 'vait for controller

pop ES gestoto BS a ter call

mov ES:MBP_cmnd_reqg,MB_inhint_cad ear cont int

pop ES :restire :eqzstet

nov AL,O ;Teturn success code

BNDIP ;not loader_bios

“‘.““itt‘.-ttt‘ti‘ﬁ‘."."**""""‘#.‘.“*‘.‘t'lﬁ‘.l

t
» PRINT MSG subrcutine
t‘tttt‘tttttﬁtt*t.‘t'tat##.ttltt##.tt&*#t#tti#tttﬂﬁtttt‘tt

-called frca: %NIT, Er;nt Err,

ecasveve

Hanl
Print_MHsg: (am Prints a lessage to _the console.
Pam para in - address of message in BIX.
sk pa:n out - none
mov AL i] €t next char from message
test Af AL s it zero - end of message ?

181

e

iz Pnsgxiet £ zerc return

s
L3
mov CL ilcad pars for call
push B ;save address of message
call CoNOUT sprint it
pop BX ;rsstore address of nessage
inc BX snext character in messag
japs Print_Mesg ;next character and lcop
Pmsg_ret: .
re

el L L L L ettt it taitdnandedt LI EL L DL
TRAP_HANDLER sutrcutine *

BRRARRAR AR ARRRRXETEBEBERISRAEIRIENB XS RBEERIEEREFEE R ARE X &

;called from:_ Vectored to froam CP/M interrupt

:** handles all traps.

+** pars in - ncne

;*% para out - none

interrupts

LYRYY ITXTY 1Y

]
]
3

Trag_Handler:

cli sblcck
mov AX,CS
mov DS, AX iget our data segment
moy_BX,offset amsg 1ntt:a€
call Prin¢t_Msg ;go grzn it
1t ;hardstcp

VRERER B R BEEEREEE RN EEREE PRSP ES SR SR SERERRE ERBERERREE R LR E R

UCON _ECHQC subroutine =
SRRERRBREBARRARARR AT ESR IS RAS SR B E PR EAE SR EREE EREE KRR KR

;called frcm: DK_Execute_Cad.

4
=
]

Uccn_Echo: b get and echo”a console char and shift

;*% €0 upper case.
;** paras in - none .
;**= pars out - returns_ char read in AL

call CONIN 1get a console character

push AX ;183ave input para

zoy CL,AL slcad pars for call

call cONouT techo to console

pop AX srestore input pars

cap AL,'a’

jb Ucon_ret

cap AL,VZ?

ja Ocon_ret

sab AL,Ya'-'})?
Ucon_cret*:

ret

sless than 'a® is ok

igreater than *'z' is ok
;else shift to caps

SRYIRRRBEBRRBRABAREXE R EBR BV EIR LS PR IR RV EEE SRR AR EER R SRR SRR XS

HE DATA SEGHENT AREA ba
;t'it#‘ttt#ttlt**l*‘tttﬁttOﬂ.t“i'.ill"‘#tlt"t“#.‘.'tt‘-
data_offset equ offset §

DSEG

org data_cffset ;contiguous with code seg

(%8 eccmacenooa- —emmman- Variables --==cecccccccncccanceos xu
include config.def ;configuration table for all devices
device_type db &isk_type itype of dev (defaulr=flcppy)
disk ib 0 ;disk number .
DK_disk db 00H sfloppy disk controller disk #
DK_err_cods db 00H

182

»
»

DODDDDOIDODOODODLD®® D DDDE Dosescese

B R e R G I A N Fa R IR R R R R N2
WEN) M HCICUNIF OO INMAE N LD

Q
0
0
ersg

msqg_inttrap

)
.

DK_err_hiinx db
DK_err_loinx gg
DK_err_table dw
dw
dw
dw
DK_iopb_addr dw
:This is the isBC 20
CK_iopb db
DK”ic_coan db
DK_seCs_tran ib
track db
sectcr db
DK_dma_addr dw
;BTd ¢t iopb
DK_rtry_cnt db
dma_offset dw
dma”segment dw
ickyte db
local_stack o
stack_base 2qu
ﬁB_bub no b
MB_contbase dw
MB_ cverflow rb
MB_page_no W
MB”sectOr . rb
:Each entzy in the ¢
124 tracks on *he HMB
tbubble number; the
:sectcr number for ¢
MB_track_table dw
dw
dwv
v

string data area for ccnsole messages

db
ib
i
2du

ggn ero0

18"
aqu

adu

o0 s 0620 0 Qe 20 -1 L0
(=gl g emegogegdsgogo TolleNe]
[

00H,0208,022H,0084,0244,0084,008,00H,026H
Q0H, C2H,044,06H,08H,0afi,0¢ch,0ef,010H
0126,0148,0%68,0180,01af,01c8,01es
ero,er1,er2,er§,etu,er5
er6,er?7,er8,ex9,€erA, erB
erCeerb erz,erf,er10,er20
eraﬁ,er 0
0 ;addr of iopb (channel cosaand)
2 iopb (channel command - 7 bytes)
880H ;1iopb channel word
1 ;numkter of sectors to xfer
0 strack to read/write
0 sSector to read/vrite
0000H ;dma addr for iSBC 202
0 ;disk erzor retry counter
0080H ;DMA offset (default)
8 :DMA segment
32 :local stack for initialization
offset §
1 sbubble device numkter 0-7
0000H :segment base addr for comtr'ler
{ub_bufien - sector_size) ;read overflw
sbubtle page number

1 - ;bubble sector nuaber (1-80
rack tafle corresponds to one of the
B-80. The 1st bgte in each entrg is the
2nd b;te in each entry is the starting
hat tfack on that bubble device.
N BT R

a a
oaggu:ou1aa:ou3ua:8§oga:o 1aa:o§3ua
06008, 061aH,0634H,07004,071aH,07348

........ -l

cr,1£,'Null Brror 22¢,0
cr,ig.'celetcd Record :?,0
cr6 o 'CRC Error :¢,

er
¢cr,lf,'Seek Brzor
er
er)

0

T

cg 1£,%'Address Error
e
cr,1£,'ID CRC Error
er

2Ll

ez0

cr,lf,'% Address Mark 09
tes1f,'Data Mark Error :',9
cr,1£,'Data Overzun-Underzun
cr,lf,'irite Protect :!',0
cr,1lf,'%rite Error :¢*,0
cr,1%,'Drive Not Ready :',0
cr,lf

‘Interrupt Trap Halt!
cr,1£,0

',0
'0

:',0

183

L -

R ML P s S ALR L o 3 e ey

,,
I® loader_bios ‘
msg_signon db er,/lf,cc,lf
] db cP/N=€6"Version 1.0',cr, l£,0
msqg_1202 db Ioading CE/M from an’isSBC 202..',cr,1£,0
msq_atb db 'Toading CP7M frcm an MBB-80..° c:,lf 0
ENDIF ;:loader_bios
sosiombh EdEn
msg_signon cr
9819 db Tt " systen Generated 11/05/81°
db "Modified for iSBC 202 Cisk and ! 4
1 SEssiso Bubble',cr,1£,0

ENDIP .not loader bios

€ad in disk definitions
clude dkprm.lib

:5!1

#aamex System Memory Sagment Table ##%xx%

Rlee csveve pluses

es_dssc_table 4b 1 ;1 segments
dw tpa_segement $1st seg starts after BIOS
dvw tpa_length .and extends to high RAM
last_cffset equ o§f§et
tpa_Segaent equ (last_cffset+0400H+15) / 16
tpa_length aqu addr_Righ_ram - tpa_segment

db o0 :£or GENCML to fill last address
RtdnnnganaakdRy ond Of variables #XEREREEREETEREEERREXRR K

LI IPTYRITYRYY TRYY

ttttattt:ttttt#*#tttttttttt#‘#t*‘#*#‘t*:tt‘t'lt"ttt#t#‘t*
» DUMMY CATA SECTI
*t‘tt‘#ttt**##tﬁt#ttt****t#*#**t‘t*‘t&tt*ttt!*tt‘#*tttit!#
DSEG 0 ;absclute low meamory
org 0 .sta-- CP/M interrupt vectors
in+0_offset rw 1
int0”_segment v 1

g t0 bdos call vectcr
TV 2*(bdo= nt :yge - 1)
bdos _int call offset

bdcs_iat_offsat cw
~ bdcs_iat_sagmen® rw 1 .add: of bdos”int call segment
’
: WA Ry R h kg t*ttt SENERR A SR RSN R RN l"tt‘l‘tlt#tlttlttttl*t
s BB~80 CCNTROLLER AND PO
: L& RT PR 22 8 F 2) tttﬁt *#tl#tt‘t'*l“#l‘”##‘*t't#tttttttll*lt
BSEG
‘ dPE_pagesel_l¢ b 1 i1s Eyte ‘c: page select, (0)
. MBF_ragesel”"hi b 1 ias 2 bits €or page select, (1)
4 MBE cmnd_red b 1 ;command registar,
S MBE_rdata_rag Th 1 ;read daca :egis:e:, (3L
M3E_wdata_reg th 1 ;¥rite data :agzster.)
A M2E status_regq rb 1 .sta’us reg;ster,
MBE_pagecn¥_lo rb 1 ils by page counter, (6)
ﬂss_gaqecnt hi rdb 1 1S 2 kits for gage counter, (7
{ MBE lcopsiz3_lo rb 1 i1ls byte for ai loof size, (8
MBF_lcopsize_hi rb 1 728 2" bits for win loop size, (9
w1 .znterna‘ use(g e pos (A,B)
MBE_pgsize_regq b 1 gage size :eg ster, (f
rv 1 I'use only, (D,B
MBE_select_bub b 1 itvo uses: select ubble dev F;
M3E”int_£fl3ag aqu MBP_ se;ect Euk ;interrupt flag

184

Ry 20 S A TR e, =it < 30 v e 1 5 s

xanppkkkk ond of Controller and Port definitions *k&ssusxs

FNERARNERAX X XNEKBEREEEREEEEEE RSB EE R EBRE B R AR EREE SRR &K

End of CE/M-86 Customized BIOS *
BEEFRREREXRBEREREESRRR LB IRE RSB R IE S IR SRR RER RS ERR S BRE B X

END

AR

FILENANES: Pascal = dkpram.def.text
CP/M = dkpra.def => dkpram.lib

ollou’ng is the disk defipiticn for
ustomized BIO i/u 86. It is for the
202 disk contrc double density)
he 4BB-80 magnetic bubble device cont-
.. DD drives are #0 and #2, and the
is #1, This deflnitlon in¢ludes all
ga.aneters fg each devzce as req-
ts 'GENDEP' ggaf
roduced by NDEF' froa t e
ded in ¢h2 BIOS during aise:h Y.
-86 manuals for explanations.

o O o oy

52,,2048,243 28,2
'2 Z1oa7,5 f

"\)

4 P
2 2

T e iefte NI T D4t

Qininintn
0 XXX
[Yo e el]

FILENAMES: Pascal = CONFIG.DEF.TEXT
CP/4 = CONFIG.DEP

bhis file describes the lcgical uapplngs betueen
E/Y disk nusbers and ¢h device~dependent
nformation. CP/N-86 allows for up to 16 disks,
upbered froma 0 to 15 decisal.

his impl2mentation 1is genera*ed for 3 CP/M disks.

a_log_disks equ 3 ;¢ of logical CP/M disks defined

he following table descriies what type of device

crresponds "*o each logical CE/g dis gunber. there

ust be one entry fcr e ch C isk defined, with a
ximum of 16 en ies. This lgl 8 tzcn only recog-

zZes *wo ¢t pes. SEC 202 an BB-80

/7% disk #0 and 'g map t¢ iSBC 202, uhlle CE/M disk
maps to an MBB-80.

ice_+able db disk_type,abt80_type,disk_type

ollowing table aaps logical Cp/H dxsk numbers to
202 controllar disk ouabers -3 only, since thls
ementa<ion has 1 iSBC 202 controller£ All CE/
numbers p fcegding the last iSEC disk lust aave
nry -- nu 7 _an 1SBC 202

jiaplamentation dg nes CP/u di sk 30 and $#2 to

zo controller d nuabers #

saNIBBOH & HS1-04

MNP Haing & aried
-~
(=]

=g M Looe
os nmm:ro—-n

)

1 u

qical taltle e% 008 DK _null,01H
£

BB

olloving table maps logical Cp/M disk auabers
-80 ccntroller base segment addresses. 1
disk numbers defined must have an entry_ (for
ialization) -- if nc MPB-80 exists at a loglcal
disk number, then the null entry must exist.

€2 0000009000 LI 009000010090 009°9¢ (ARr1909eveesotesvret [Jervevsdiesvivivecsosve (h Q.Q‘Q.Q-..o-o.-.oocco.o.GOIQn.aolca‘o.o.o

QO RR A Nl

mumorll

4
/N
it
.|

185

g%:gg%ical_tahle 33“5%5%%

tEnd cf configuration file

*

B
il.OBOOOH,uB_null

e TR N X SO R T S

AERENDIX P
PROGRAM LISTING OF MB8OROM.A86

FIILENAMES:

titla 'Customized ROM Boot Loader!
FECM bootstrap for cpgn-as on an iSEC 86/12A
) with the
isBC 201,202 Ploppy Disk Ccntrollers
an
MBB-80 Contrcller

FRRERRERKEBERRRRERREERREEXRARRREER SRR B RER P ER BB R R B RN R R RN
L

This Customized RQM lcader fcr CP/M~86 has *
the following hardware configuration: *
Procassof: _iSEC 86/12A *
Disk_Ccntroller: 1Intel SBC 201 or 202 *
Bubble memory: MBE-80 with mescry-mapped 1,0 =
Memory model: 8080 :

-

*

»

®

Programmers: J.A. Ncufeld, M.S. Hicklin
Revisione :

BRREBEEERBEEERPEERBERBREXIEERB PR RN EERXR R ERE R RERERERE RERE S

RARARKREE RAERERRAERARXREREEREAEBARR R RRRRR
}his is +he BOOT RCM wvhich is resident *
in the 957 acnitor. To execute the boot *
the monitor_ must be brought on-line and =
then control gassed by g£fdu:0 or by *
qf£d4:0004. The first acnitor coamand =
will boot to an iSBC 202 disk and the
second command will bect to an MBB-80.
First, the ROM moves a ccpy of its data
tc RAN at location 00000H, then it
initializes the segment registers and the*
stack poxntef. Tze 18259 ge:zgheral int- *
rupt controller is setup for interrupts =
at 103 to 174 (vegtors at 000404-00Q05FH) =
and e ge-trz gered auto-EOI (end of ipn-~ *
terrupt) modé with all interrupt levels =
zasked-off, Next, the agproprzate device*
centroller is inifialize ».and track 0
sector 1 is read “0 determice the target
gg:agra h address for LCADER. Pinally,

-]
¢

I X X X}

OADER on track 0 sactors 2-26 an
rack 1 sectors 1-26 is read intc the
target address. Control then transfers
to the LOADER prcgram for executicn. ROM
Q0 contains th2 evén aemcry locaticns, and
RON 1 contains the odd addresses, BOOT
EOM usas RAM between 00CO0H and OOOFFH

(ahsolute; for a scratch area,
oo 20 o e A o e e oo o e 20 22 o S S 2 20028 o 2 o8 o e o T SN 3 2o o o

.
1
-
*
.
’
.
*
.
A
-
’
.
’
.
1
-
*
.
*
.
*
.
’
.
’
.
*
.
’
°
’
.
*
.
*
.
.
.
1]
.
L4
.
*
.
’
.
[]
.
’
.
L J
.
’
.
*
.
*
.
’
.
’
.
[
.
[
.
’
.
14
.
.
.
L4
.
’
.
*
.
*
.
*
.
’
.
v
.
14
.
’
.
[}
.
L4
.
1
.
.
o
’
.
*
.
’
.
’
.
’
[
.

(22222 B2 2R NSRS ENENEE NN AR L EEEEEEEERESENY]

[ZE RS XX XX

187

T e - et e et m e

s WMk ek X 2 o ok ke ok ok X EQUATES REBERBEEREREREBE S REE W@k $

: = %
:I ------------------- Miscellaneous equates —-—--—=--==~-----
) cT qu OdH :Ascii carriage retusrrn |
disk_type qu O1H itype. for isBC 202 disk
1£b80 type e g 83% ;%sc%xf%lngagegg disk
3 u e ; -
rcused y? egu Qf£f4auH 'zgse o§ this code in ROM
sector_size equ 128 ;&E/M sector size
| start_%¥rk1 equ 0c88 ;offset for trk 1, fcr DNMA I
R ettty I8251 USART console FOItS ===—-=-=<-===<-e---
’ CONP_dat*a equ 048H ;I8251 data port l
CONP_status equ 0daH ;I825%1 status port

;--- Disk Controller command bytes and masks (iSBC 202) ---

DK_chkint_mask equ 004H ;mask to check for DK interup{

CK_home_cad equ 003H ;move to home positiocn coamand
| DK_read_cad equ 004H ;read cocamand
: |
e mm————— INTEL iSBC 202 Lisk Contrcller Ports =-—-=—-—=-ww--
' DKE_base 2qu 078H ;ctrler's base in CP/H—BA
DKP_result_tyge equ DKP_Ltase+1 ;operation resule tyge
DKZ result_byte equ DKP_tase+3 ;operation result byte
DKE_reset equ DKP_fkase+7 ;disk reset
CKP_status equ DKP_Lase ;disk status .
DKP_iopb_low equ DKP_rase+! ;1lovw addr byte cf iopb
PKP_iopb_high equ DKP_Lase+2 ;high addr byte cf iopb

e m————— Magnetic bubkle characteristics (MBBE-80) --=wwe--
MB_buflen equ 144 s;buffer length for MBB sector
MB_contbase equ 080C0H ;segment base addr fcr centr
MB maxdevs equ 7 ;cubble devices are #0-#7
MB_maxpages equ 641 +1# of pages on each device
MB pages_sec equ 8 8% of pages.per icgical sector
1 MB pages¥ze edu 18 sbubble device pagé size
¥B”t0s]1_paga equ 0 ;starting page# £Or trkQ,sectl
MB”t0s2” page equ 12 ;starting pages# for trkQ,sect?
' MB_t1s1_ _page agqu 312 i S

tarting page# for trk1,sect:

¢ ==== Magne+ic bubble ccamand bytes and masks (MBB~80Q) =-=--
MB_chkbusy_cad equ 020H ;is controller busg ? status
MB chkiant_mask equ Q80H ;mask to chk for M3B linterupt
i MRTinhint”cad egqu 080KH ;interrupt inhibit/reset mask

188

14 sipitialize the contrcller
104 -aultl Fage aocde operation cad
J%g .nult1 gage read commard

MB_ini¢_cad aqu 0
ME_mpage_cad aqu 0
MB read cmd equ 0
MB_resa¥_cad edgu 0

i:reset thé contrcller

jmm——— INTEL 18259 Programmable Interrupt Controller -----;
éic_59p1 equ 0COh ;8259a port 0
P{C_59p2 egqu 0C2h ;825%9a port 1 |

DkamumaRkRxRea%x ENTRY POINT AND MAIN CODE *¥s:summpdmkssnski
’ CSEG romseg

Enter here wzth gffda 0 command for iSBC 202 boot
mov DL Ee ;set koct tyge to disk
japs S{art Boo +g0 start c¢o

sEnter hers Hlth Tfdu: oooa comaand for MBB-80 boct

sov DL, abb80 type set koot type to atb80

Start_boot:
;move our data area into RAM at 0000:0200
aov AX,CS ;pcint DS to CS for source
mov DS, AX
OV SI.da*abe in ;start of data
ROV DI,offset ram_start ;offset of destlnatlon
BOV %g.g :Set dest segment (ES) to 0000
mov A
mov CX,data leng*h ;how much to move in bytes
rep aovS AL7AL izove fron epros, byte at a time
:set segment registers apd initialize the stack
mov 1X,0 iS€t DS segment to 0000, now in 2AM
nov DS, AX ;data segmént ncw in BA&
zov SS AX
nov SP stack_ offset sinit stack segment/pointer
cld clear the direction flag
;Se;up 3% O?%59 Prograllable Interrupt Ccnticller
oV
out PIC 39p1/AL :8259a ICW 1 8086 mode
mov AL,U10
out PpIé 3982,AL :8259a ICH 2 vector 40-5F
mov AL,TU1f
out pPI¢ 5952 ;825%a ICW 4 auto EOI master
mov AL, Uff
out PI&_59p2,AL ;8259a CC¥ 1 wmask all levels off
wakakkkkhrkse BRANCH TO SELECTEL DEVICE FOR BOOT #*s%kkxkkkx=n

LI TR XY

;deteraine if booting t¢ iSBEC 202 or to a MBB-80
cap Dl,disk_<ypé :1is this a 12022
Jne Boot Mb58 L3if not, boct to mbb80

TS RARRRERERRRRAER [SRC 202 BOOCT CODE *EXXRARRRXBANSKEERURR

:

{ Boot_1202: salso return here on fatal errors
:Réset and inltiallze the iMDS 800 Diskette Interface
in A +DKP_result yge ;jclear the controller
in §DKP “result_L

cut DK teSet AL T is dumay for this command
;home the SBC 262

aov_ DK con DK hcle cmd ;load io gomnand

call CK_ E!ﬂcu e_Cad :home the

189

mov DK _io_coam,DK_read cndgéall io nov reads only

;get track Of sectof 1, The NCMD header reccrd
s

mov BX,offset genheader ;ocffset for 1st sector DMA

aov DK_dma_addrf, BX ;store dma address in iopb

mov DK secS_cran,! stransfer 1 sector

mov DK sactor,1 ;start at sector 1

call DR_Execufe_Cad ‘read track 0, sector 1
:1get track™Q, sector 1, the GENCMD header record

mov ES,abs_location ;segaent loc for LCADER

mov AX,ES ;t0o AX to manipulate

aov CL, 04 ;aust xlat to 16~-kbit addr

sal AX,CL ;shift seqment . .

mov DEK_dma_addr,AX ;store dma address in iopkb

mov DK secS_tran,25 stransfer 25 sectcrs

mov DK‘sectErzz ;:Start at sectcr #2

call DRK_Execute_Cmd sread trk 0, sects 2-26
sget trk 17 sect 1=26, put at next place in RAM

mov Ax.és ;compute offset fcr track 1

add AX,starct_trkl ;add in vhat already read

mov CL, 04 ;Bust xlat to 16~bit addr

sal AX,CL ;shift segment L

aov DK_dma_addr,AX :store dma _address in iopb

mov DK™ sacS_tran,26 stransfer 26 sectcrs

mov DK_sectdr,1 ;start at sector #1

moy DK track,1l sstart at track #1

call DK_Execute_Cmd ;read trk 1, sects 1-26

jap JumaP_To_Lcader :go0 rass control to loader

PRERERRRKEXRRRRARARA MBB-80 BOCT CODE *RARRRRRREEBRRERRERE R

Bect_Mbb80Q:
mov AX,MB_contbase ;load base addr_ of MBB-80 cont
. mov ES,AX” ;make sedment addressable
sinitialize +he MBB-80 contrclier

¢initialize page size and ainor loop size .
mov AX,MB_maxpages -pages per bulkble device
mov ESiIMBP_lo ps;ze_lg,AL slccopsize lcew b{te
mov ES:MBP_loopsize_hi,AH ;loopsize hi byte .

. mov ESsMBP_pgsizeg_reg ﬁB_pageszze ;load page size

;issue reset command to fhe controller
mov AL,MB_reset_cmd ;reset mask byte

. moy ES:MBP_cmnd_reg,AL ;issue reset coamand
sinitialize 2ach bibble device
aov CX,M¥B_maxdevs+1 icount fcr locp~¢ cf devs
mov AL,O sdevice # to initialize
Fcr_sach:

mov ES: MBP_select_bub,AL ;select each dsvice
mov_ ES: MBP_cand_req,MB_init_cnd gln;t this device

push AX :saVe bubble# !
call ¥bb80_wWait ;wait for controller
pop AX irestore bubble#
inc AL ;next device number
loop For_each ;dec CX, loop if nct zero
;get track U, sectecr 1, the GENCMD headér record
mov BX, o:fse+t Jenheader ;addr of dest in RAM
aov AX,¥B_=0s1_pags sFage % for =tk 0, sect 1
‘ aov CL, 1 stransfer one sector
3 mov_CH, 1%438 pages_sec 1# O gaﬁes to transfer
call ﬂﬁbao_xea ;Tea tk 0, sector 1
! ;get «rk 0, sé8ct 2-;6, put at abs loader address
mov 8X,abs_location ;frem GENCMD header rec
U ;convert ¢o 16-bit addr

sal BX,CL ishift segment
mov AX,MB_t0s2_page ;gage ¢ £or trk 0, sect 2
aov Cl, 25 stransfer 25 sectors
L mov_ CH, 25%*MB_pages_sec ;% of pages to <ransfer
S call 56b80_8ead ;jread ttk 0, sects 2-26
g ;get ¢rk 1, sect 1-26, pui at next place in RAM

190

S L s At RN - «

mov BX,aps_location ;addr of dest in RAM

adad Bx,ata*t +trk1 ;add those already read

aov CL, 4 sconvert to 16-bit addr

sal B8X,CL ;shif+ segaent

mov AX, MB_t1s1_page +Fage ¢ for trk 1, sect 1

mov Cl 26 ;transfer 26 sectors
CH,26*MB_rages_sec ;% of fpag es to ’ransfer

call nﬁbao REad :raad trk 1, sects 1-26
PagakkkRRRRRERNR DASS CONTRCL TO LOADER *EXXXEEERBEXERRMRER

Jump_To_Loader:
moV¥ ES,abs_location ;ieggent addr of LCADER
04

;cffset of LOADER

nov leap sogmen* EC
;setup far vec

mov leap o: se

jmpf dwoTd p*r ieap offset

PxukRRRARERIFARkRR END OF MAIN CCDE $RXXZRXRBRXRKAREHAEENE

LX)

sadRkRRnkxk® BEGINNING OF SUBROUTINES ®kkikukmimk®ihim®in ks

-*i****ttt*****t*t***t*ttt#t##ttt#***#tta#*#t#*t#‘#*t*ttt#t
'* CONIN =subrout *
-*t***t**m***tt****t*t**ttltt**#t*#l*tttt###*ttt**#***t#**t
;called frcm: Ck_Execute_Cad.
Conins ;% returns consdle keyboard character
:*¥ parm in - none
i%#% farm out - returns character in AL

in AL,CONDP_status .get status

and A£,2 .fee if ready-bit 1-is set

jz Conlin +if not, it is zero and nct ready
in AL,CONP data ;ready, sc_read character

and A£,07fB irsmoveé parity bit

rat

tttt**:t#t***t*****tt**tt*ttt#tt***tt#*t***#***#**#tt#*t#*

» CONOUT <subrcutin

sk% e i ale e ol ol o o okt el e ok o ke R R KR ###*#*t*t#t*tvt#*t****tt*t#****t#

;called frcm: Princt_Nsqg.

Corcut: i#% yrite character to console keyboazd.
i%% parm in - character t0 be outfut in CL
:%%® Carm cut - none

in AL£CON§ status ;get console status

CYEYE T TS

and ;s€é if *eadx~b1t 0-is set .
jz c016UT :if zere, ready- keeg checking
aov ;lcad 1nput parm to AL for out
ou* CCﬁP data,Al ;cutput character to conscle

ra

PEIAARRAERARARBARRRARRRRER S SRR RRA T RRR SRR B L ERR AR R A AR SR &

°* DK EXECUTE CMD subroutine *

-tt#*t*#*ttt*t*t!tttt***!*##*##*!*#lsttlittttt*t#ttt:-tttt-
-called frcm: in-line from Bcot_icd2.

Dk_Exascute_Cad: ;** Executes a disk read/write Ccmmaczd

A
;** rarm in - CMA addr ia BX.
. +*%* paro cut - _ncne
;g end ton to disk controller via two ports (< by%es)
end_iopb:
inpAL,DKP resul:_tyge iClear the contrcllecs
in AL,DKP cesul+”"by*e ;clearc che cong‘cl-e:
nov Ak,cff3ex DKTicpb ;ge+t address of lopt

191

AD=A118 028 NAVAL POSTSRADUATE SCHOOL MONTEREY CA F/8 9/2
APTATION OF MAGNETIC BUBBLE MEMORY IN A STANDARD MICROCOMPUTE==ETC(U)
DEC 83 M S HICKLIN: J A NEUFELD

WCI.ASS!F 1ED

: END
s
I nv\c
|

S A - NI . 11 (s B My e

out DKP *opb lov,AI °output low byte of iopb addr
a0v & h byte pE2 AL for cut
out Dxb %ogb hlgﬁ ;ou blgh yte of iopt dr
'check fer™ eTrup+* fro- disk controller

Disk
‘1n DKP stazus s g6t d sk status
an DK chk lask nterrupt set?
Dziﬁ gg keep chef
: ise¢ %t nterrngt signi es 1/0 completi
1 DKP _result_%type et reaso for 1nterrupt
- ! cup Ai Tvwas I/ coaplete
- z Check rasult +3£f so, go check the result byte
3 mps Send_iopt ;if not, go try again
, ijchéck result byte for errors
p Check resul
- Ia I,_DKP rasult_byte ;get result byte

and A .tc I/0 ccaplete?
jnz Pa{al err : not, fatal error .
nd AL, 0f€H .c heck for error in agpy bit
z DK execute_ret ;no errors, go retuin

Fatal_eorr:

rt tnov CL,0 : iclear CL for counter

est:

rcr AL, 1 icheck each kit of result
inc C sccunt each bit
test AL,O1 stest each bit
z Prest izero, go check next
aov AL,CL in ot zero, error, imc count
By by tSoubl h%gh dx t a takle
a : u e or 0 wWor a
aov BX, AX ’i as Index

mov Bx.errtbl ax} .get addr ct error asg
sprine ag ogr €rxcr |essag
rin usg s¥rite as © console
| call Conin” : vait for key strike
i Jup Boot_1202 sthen start all over
Dk_ execgte ret:
r=

[(TYT I YY Y]

RPPRRERBRERAERERRRRARBRREBRRERRE SRR R BBBREE RE SR XK KRR KRR E % ®
*®

* MBB8Q READ subroutine
(RPARBREERERABRRERRERBRRER R KRR R DR WA R KRN KRR RN R R RWE R
s;called from: in-line froa Boot_MLb8O.
MbE80_Read: {*% reads a sectcr froa bubble
P pars in - BEX 1s the DMA cffset, Ax is

i7" BRe stert;n page # for the xfer
, H has t g sectors to xfer, and CH
; § has the pages to xfer.

! *% para out - none
;set nultigage mode

3 nov cand reg, MB mpage cnd saultipg mode cad
i sload first Ba ge nimbér £Or trafist
T mov ES:MB ag esei %o.AL H a e select to te
B nov ES*HBP agese 1,A8 ; € Sse
.zl :Set number of pages Tc trans er = pages/sector
" mov ES: MBP_pagecnt lo,CH .#pages to xfer
o aov Eg HBP a ecnt h‘,o sh te of # is 0
o ;set up n ress t¢ receive data
' mov CH,0 s1clear high byte cf CX
T Read_a sector'
{ ish ;save # sectors tc xfe

() 4
mov CX,MB_buflen ;count for loop-buff size
:select kubble device and issue read coaamand
mov ES:MBP_ select strks 0,1,2 on dev #0

mov ES:MBP_cmnd ﬁ read_cad’ sread froa FIFO
Reé aI;t?O: intSrrupt fron centrCller

192

A M 3ms o g e e e -
.

o

LI XX LYY T

Mbb80_wait:

P

P

‘soows

mov AL,BES:MBE_int_flag ; et interrupt status
nd lLaua chkint_mask : te:ru set

1see lf re!ﬁ enoug

cm MB
jnghaeaé ohe

h frem bub% e sec
€en - Sector s;ze) .xferre enon

ze:o kaeg ckin
for ¢ secror

.1 nc read agother yte
isave location

.regd from MBB PIPC buffer into dma area

Read_one:

“mov ALiES t4BF_rdata_reg .read a byte into accus

mov 8

ioop Read_int
BX

05 cX

oop Read a sector

call Mbb8U Wa

i¢
mov ES:MBPT cnng _reqg,NB_ inhznt cns

ret

:load accua znto dsa area
: ncrenen in
: X, g lf nQt zero
;resto:e ¢s in RAN
srestcre sec s tc xfer
-read next sector
Etroller

€ar ccnt int

HRXRRBERERPREREREEXRBEER NS REEYREERBEE R EREEEE RS ERRE R ERB R K

]
bl MBB80 WAIT subroutine *
RARRRARIREARRARERRERWEREE I ARRNAE SR A RRR BB AR RRR LB TR RRREE &

scalled from: Boot ubbso, Mbb80_ Read.

osee
-]

[]
2]

i*% checks statg
i** Keeps check ng (va;t) until not b

cont T busa
Sy
n - noneé

;%% parm cut - none

See_zero:
aoy AL,ES:MB

and AL,HB chEBu

Z See_ zeTo
Cont_busy:

atus reg_ ge& stiius re 1ste:
;:1f so, keep chccking

sy_cal

“mov AL ES: MBP_status_reg ;get ;tatus :egésger.ask

and AL, NB chkBusy_cad gige

jnz Cont_Busy
Tet

bus
kusy, ¢ eck again

*#****tttttt***tttttttttttttlt'#t‘tt‘t#.t#t#ttttttttt‘ttt
PRINT _MSG subrcutine *
t*tt#t**tt##tttttt#tltt#t‘lttt‘lt‘...tt#““#‘tt‘tttttttt*
;called frcm: Dk_Bxecute_Cad.
rint_Msq: :** prints a sesSage to the conscle.
;** para in - address of aessage in BX.
i%* parm cut - none

aov (8%]
i,
push 32

call Conout

gop B

jmps Prin‘ _Msg
msg_ret?
ret

APRBRRB kR ReRe® PND OF

§ it zero - end of meszage ?

;et next char from message
g zor§ return

s dress of aessage
§estore address of lessage
n

ext character in _messag
ext character and lcop

.
14
.
?
.
.
.
’
.
[4
.
’
.
’

SUEROUTINES *#S%sssasssshesaunnn

193

e s et

-

s:Isage of data to be moved
databegin 2qu offset §

{A tesplat2 iSBC 302 iogb
b 080H

db 0

db @

db 0

db O
dw 0000H

:Brd cf iopb

Cerrtbl g: offset er0

offset erl

dw offset er2
dw offset erl
dw offset erd
dw offset er$
dw offset eré6
dw offset er?
&ero b cr 'Nul
Cerl gb cr:ié
Cer2 db cr, 1f, 'See
Cerd db cT, f,'Add
Cerd db cr.i at
Cer$S db cr, f,'ﬁr
Ceré db cr, lf,'Hti
Cerx? db cr,lf, pri

dataend equ offset §
data_length

reserve space in R
(no hex records ge

equ dataen

L IX I YY ¥

DSEG 0
org 02008

ras_start equ $
:This is the iSBC 202 iopb
DK i £b P
CK_1 o_con rb 1
DK”cseCs_tran b 1
DK_track rh 1
DK_sectoa tb 1
DK_dma_addr rv 1

+Efd cT iopb
errthbl b 8
er(rb le
er] b le
erz th le
er3 th le
erd b le
ers rh }e
eré th e
er? rb le
ieas_otfset Tw]

eap_segment b’} 1
' '} 32
stack_cffset aqu of

to RAM

(channel conna d - 7 bytes)
1opb ch anse word
coaman
nulbct of sogto:s to xfer
seatar T oo ead
o
daa agdr for iSBC 202

h
?

1 Errcg ??',o

k Brror'

ress Brror' 0

a Overrun-ﬂndet:un',o
te Prctect!,0

te Error',9

ve Nct Ready'.o

d-databegin

AN for data area
nerated here)

(fhannel command - 7 bytes)
opk channel word

'io coamand

.nunte: cf sectors to xfer
T

:Secto 0 ad

i3ms addr for isBC 202

ngth cerd 316
ngth cerl
ngth cer2
ngth cer3
ngth cerd 14
n tg cerd : 11
ngth cerd + 15
ngth cer? :17

:local stack
fset $ stack froma here dcwn

194

M

#
‘ s 148 ste seactor will be re¢ad in here—~-GENCMD beadsr
genhea egu ofts?t s
T
rv 1
ats_lccation g: 1 :absoclute load location
14"}

N I RIERAREBRAREFP SRR AR RARSAE I BB RSB BR LSS LSRR S S IS SIS SRS S S
| MBB-80 CclIgOLLBB AND PORTS »
| IRABRRARARERAANBERERRARR AR S SRR S RS RERS IS XEL SR SR RESBEE RBEBE S
}) ESEG
; MPE_pagesel_lc rb I :1s byte for page select, (0
i MBE_ pages=l hi b 1 :ns Zybits fog gage seleétf k1)
5 MBE_cand_r29 rb 1 ;command register,

MBE_rdat3_reg rb 1 iread data regzster, (3&
MBE wdata_re rb 1 ;write data teqiste§)
MBE_statuS_reg rb 1 ;status register,
MBE_pagecnt_l¢ rb 1 :ls byte for page counter, (6)
HBE_Eagecnt hi rb 1 ;AsS 2 bits for page counter, 7
. MBE_lcopsiz€_lo rb 1 s+1s byte for minof loofp size, (8
MBE_loopsize_hi rb 1 H T 2 bits for min loof size, (9
ry 1 : nternal use (page posi (A.ﬁ)
MBE_gpgsize_reqg rb 1 gage size reg s e:, f
ry 1 I use only,
HBE_seleg} bub rb 1 e uses: sel c{ ubble
MBE int ig equ MBP select Eub § iru t t
sasRsA%mes and of Contreller akd bort definit oiad

' H

A ttt*tt:t*tat*:tttt**tttatt:*:tttt:a:taa::cttat*tttt:att
™ End of CP/M-86 Customized ROM
;*#t**t**t##*#*#t*t#ttt#*ttt'tt#tt###ttt#t#ttttttt*###tttt*
END

N

? 2

- |

&

4

A4 ,,‘

195

R
3
3
%3

1.

8.

10.

1.

12,

13.

LIST OF BREFEBRENCES

Hallidaya 2. and Resnick’ok-, Iupdapentals of Physics,

iley an onsg, Inc., 19

O*'Dell, T. H., Magpetic Eubbles, John Wiley and Sons
1974, i ! !

Inc.,

Markham, D. C., "Magnetic Bubble Memories: Part 1 The
ggv;ge.Jugésggggnis_§£9$nszxsss, v. 51, no. 624, pp.

Chang, H., tic- e echpo s Marcel
Dekker Inc., o

Hunter, D. J., . “Magnetic Bubble Memcries: Part 2
S;Steﬂs " ;lgg;;gnzs_lnssn_szzns. v. 51, no. 625, pp.
39-91, Su1

Haggard R. “Magnetic Bubkble HMemor Systeas,"
333 oni g 2 ¢e Vo 52, no. 639, ypp.y 61-69,
ane N

Sieqgel, P "Megabit Bubble Memory for Non-volatile
Storage E%&B%g%.g_usus_ems. v. 52, no. 634, pp.
51-59, febr ary

Bnrskg, Dave, "Special Report- Memories Pace sttens
GIowt "' 28 no. 0' pp. 3-6 8'
70, 72, 7%, ¢ Sep elﬁer 1986,

Poreman, Alling C,, _"Bubble Memory,"™ Digital Desigm.
v. 11, no. 6, pp. 26-37, June 1981,

Clevett, Richard, “"BFubble Memories as a tloggy Disk
Raplacement,’ paper presented at MIDCO ’ El
Segundo, Callfornza, september 1978

Rigital

Call, Leonard M., "Bubble Henorx Systeas
Design eceaber 1§80.

¢ Yo 10, no, 12, pp. 38-39,

Davis Edvard W., "Suitability ot Bubble uenorzes in
%g;aliel Processor A:chitectu:es,] 0 3ings o

196

14.

15.

16.

17.

18.

19.

20.

uacgonald, Russcll "Buhble Nemory Circuits Promote
mensional Stack 1n1 copputer pgz;gn, v. 20, no.
6, pp. 135-141, June 19817

Bhandardar, D. P. ard Juliussen, J. E., "Tutorial:

Computer Systea Advantages of g etic Bubble
ggggries. coapyter, v. 8, no. 11, pp. -39, Noveaber

The Engineering .Staff of Texas Instruments
Incor--:a_ Semiconductor GIQUE, 80 2(

Bubbl-Tec Division pc/M Incorporated gggsaﬁ*ag
hd B - : r} goc us Qn‘:‘. No. I
eceabe .

andalor ., 2 ARSI el e Cheliat PN
, Hast ostgradua

onteérey, cal forn a; 1951.

Intel Corporation, €
' *
Intel Ccrporatiocn, 5 34
e P .

Digital Research CP/M Preliminary Docusentation,
CP/M-86 System Referepce Mapyal, 1980.

Digi«al Research, CP!-BG Preliminary Documentation,
- en e, 1980.
Bellmer, ¥. A. and Cavis, E. 'uaqnetzc Bubble

Memories; Technole and A lxcaticns
e FH pppp 67-70, 85-90, qgus

INITIAL DISTRIBUTION LIST

No. Copies

7. Defense Technical Inforsaticn Center 2
Cameron $tation | -
Alexandria, Virginia <2314

2. Defense Logistic Studies Inforamation Exchange 1
U. S. Army Logistics Maragesent Center
Pcrt Lee, Virginia 23801

3. Librarg, Code 0142 2
Naval ostgraduate School
Mcnterey, Califcrnia §3940

4, Department Chairmamn, Code 52 2
Cepartment of Computer Science
Naval Postqraduate School
Mcnterey, California 93940

S. Capt. Jeffrey A. Neufeld, USMC 2
Defense Communciations Agency,
Cerey Engineering Buildihng
1860 Wie ie Avenue
Reston, Virginia 22090

6. Capt. Michael S. Hicklin, USMC 2
1355 ¥orth 11th Street
Wytheville, Virginia 24382

7. Lcdr. Robert R. Stilwell, US¥, Code 53sB 2
S Department of Computefr Science
N\ Naval Postgraduate School
3 Mcnterey, Califcrnia 93940

8. Associate Professor UOnc R. Kodres, Code 52KR 2
Department of Computer Science
Naval Post :aggate Schoo%
Mcnterey, California 93940

. 9. Daniel Green (Code N-202) 1
Ny Naval surface Weapons Center
p. . Dahlgran, Virginia 22449

10. Cdr. P. Ruff, USN 1

’ PMS 400BY
Naval Sea Systeas C
Washington, D.C. 2

ommand
0362

198

